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Abstract: This paper proposes a structure-aware AI-driven anomaly detection method to address challenges such as anomaly
scarcity, complex structural features, and blurred decision boundaries in industrial data. The method builds a multi-layer residual
feature enhancement module to extract multi-scale temporal features and incorporates a structural attention mechanism to
dynamically model the importance of different channels and time positions. This improves the model's ability to perceive
potential abnormal regions. A dual-branch architecture is designed to capture temporal consistency and reconstruction error from
the input sequence, forming a comprehensive anomaly score signal that enables unsupervised detection without explicit labels.
The model adopts an end-to-end training framework and applies a sliding window mechanism to construct decision trajectories
over continuous time segments, enhancing the detection of both sudden and evolving anomalies in industrial systems. A
sensitivity evaluation scheme is developed across multiple dimensions, including anomaly ratio, noise perturbation, and input
sequence length, to verify the proposed method's discriminative stability and structural robustness under varying operational
conditions. Results show that the method performs well across multiple evaluation metrics, demonstrating strong adaptability and
practical engineering value.
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1. Introduction
With the accelerating trend of industrial intelligence and

digital transformation, the volume of data generated by
industrial systems is growing exponentially. This data includes
sensor readings, equipment logs, control signals, and other
heterogeneous sources. These high-frequency, continuous, and
multidimensional data streams contain essential information
about system operations and also hide potential risks such as
equipment failures, process deviations, and safety hazards.
Against this backdrop, accurately detecting anomalies within
complex industrial data has become a critical technical
challenge[1]. It is vital for ensuring system stability, optimizing
production processes, and reducing maintenance costs.
Traditional rule-based or threshold-based anomaly detection
methods often struggle to handle the nonlinear patterns,
dynamic changes, and high-dimensional noise commonly
found in industrial data. Therefore, there is an urgent need for
more intelligent and efficient detection mechanisms to meet the
complexity and real-time demands of modern industrial
environments[2].

In recent years, advances in artificial intelligence have
brought new capabilities to anomaly detection tasks. Intelligent
approaches, especially those based on deep learning and
unsupervised learning, demonstrate strong feature extraction
and generalization abilities. These methods can identify
potential anomalies by learning the intrinsic structure of data,
even without explicit labels or prior knowledge. Compared to
traditional approaches, AI-driven detection methods adapt well
to multimodal inputs in complex environments. They support
online modeling and dynamic updates for large-scale data,
significantly improving accuracy and efficiency. In industrial

settings, AI methods can be embedded in production lines,
equipment management systems, or cloud platforms to provide
real-time alerts and proactive interventions. This enables a shift
from reactive responses to preventive strategies[3].

At the same time, industrial data presents several inherent
challenges. These include non-stationary distributions, extreme
scarcity of abnormal samples, domain shifts across different
operating conditions, and complex interactions among multiple
data sources. Anomaly detection is not merely a single-model
classification task; instead, it requires integrated modeling
techniques such as temporal dependency analysis, feature
fusion, and holistic system state awareness.

Recent studies in other safety-critical domains, such as
healthcare, have demonstrated that multimodal integration
frameworks-combining heterogeneous time-series signals,
structured records, and high-dimensional representations-can
significantly enhance predictive robustness and system
understanding, particularly under data sparsity and distribution
shifts. Similar multimodal learning principles have been
successfully applied to complex outcome prediction tasks in
intensive care environments by jointly modeling physiological
signals, clinical variables, and imaging data, highlighting the
effectiveness of cross-modal feature fusion in complex systems
[4].

The flexibility of AI-based methods allows them to be
seamlessly combined with diverse modeling paradigms. For
instance, graph neural networks are effective in capturing
equipment topology, while autoencoders are useful for learning
latent space representations. These capabilities provide
essential support for anomaly modeling in industrial contexts.
Thus, modeling innovations and algorithmic designs tailored to



the characteristics of industrial data are key to advancing AI-
driven anomaly detection research [5].

Moreover, modern industrial systems place higher demands
on anomaly detection solutions. The detection outcomes must
offer high confidence and interpretability. At the same time, the
models must support efficient deployment and fast inference on
edge devices or in low-power environments. This has led
researchers to focus more on lightweight model designs, end-
to-end inference frameworks, and seamless integration with
industrial control systems. While AI methods enable
sophisticated pattern recognition, they are also making progress
in interpretability and system integration. As a result,
intelligent monitoring systems are becoming more practically
viable. In critical industries such as energy, chemical
processing, and manufacturing, smart anomaly detection is
evolving from an auxiliary tool into a core component of
operational assurance systems[6].

In summary, AI-driven anomaly detection methods show
great potential in industrial data analysis and system safety
management. With ongoing advances in algorithms,
computational resources, and application demands, AI-based
approaches built around the structural and real-time
requirements of industrial data are leading traditional systems
toward self-awareness, self-decision-making, and self-recovery.
Further research into the adaptation mechanisms and detection
strategies of AI in industrial contexts holds strong theoretical
significance. It also plays a vital role in achieving strategic
goals such as intelligent manufacturing, Industry 4.0, and
digital twin systems.

2. Related work
Recent advances in AI-driven anomaly detection have

leveraged increasingly complex architectures to enhance
generalization and precision under unsupervised settings. One
notable contribution is PNI, which emphasizes the spatial
modeling of positional and neighborhood information in
industrial sensor data. By encoding local spatial dependencies,
this approach effectively distinguishes anomalous behaviors in
high-dimensional systems [7]. Similarly, masked Swin
Transformer U-Net models have demonstrated potential for
capturing both local and global patterns in multivariate
industrial signals through hierarchical attention and spatial
masking, supporting robust anomaly detection even in visually
sparse or noisy data environments [8].

Beyond conventional architectures, researchers have
explored enhanced sequence modeling frameworks. Xie et al.
proposed an inference-stacked recurrent autoencoder optimized
for strong mechanistic contexts, combining temporal inference
with reconstruction capabilities to bolster detection of subtle
anomalies in time-series industrial data [9]. These designs align
closely with the dual-branch and structure-aware strategies
presented in our method.

Meanwhile, few-shot anomaly segmentation has gained
traction for addressing label scarcity, a core challenge in
industrial applications. The DictaS framework introduces
dictionary lookup mechanisms for class-generalizable
segmentation, offering a novel approach to recognizing rare

anomaly patterns with limited supervision [10]. This resonates
with our unsupervised strategy, especially in terms of
generalization under sparse anomaly presence.

The integration of graph neural networks (GNNs) has also
emerged as a promising direction for structural modeling in
complex systems. Structural generalization methods, such as
GNN-based microservice routing, enable the modeling of
relational dependencies across components in distributed
environments [11]. This principle has been further extended to
spatiotemporal prediction tasks in backend systems, where
GNNs capture both temporal dynamics and structural
interactions across multi-source telemetry streams [12]. These
graph-based insights provide a theoretical foundation for our
structural attention mechanisms and multiscale feature
modeling.

Other foundational works contribute valuable modeling
techniques and design principles relevant to our architecture.
For instance, dynamic prompt fusion in large language models
(LLMs) illustrates the utility of adaptive cross-domain fusion, a
concept that parallels the dynamic weighting of temporal and
structural cues in our model [13]. Additionally, the use of
generative diffusion models for conditional control
demonstrates the importance of flexible representation learning
and controlled synthesis in high-dimensional environments,
echoing the dual-branch predictive– reconstructive design in
our detection framework [14].

Even studies from adjacent domains, such as robust control
strategies for mechanical systems, offer transferable insights.
Adaptive control techniques for high-performance actuators
emphasize feedback robustness and stability-a valuable
analogy when considering real-time deployment of anomaly
detection algorithms in industrial control loops [15].

Together, these works establish a rich context of
methodological innovations that inspire the design and
optimization of robust, interpretable, and generalizable
anomaly detection systems like the one proposed in this paper.

3. Method
This study proposes an AI-driven anomaly detection

method that integrates multi-scale feature extraction with
structure-aware modeling to address the challenges posed by
complex, heterogeneous industrial data environments. By
capturing anomaly characteristics across multiple temporal
and spatial resolutions, the proposed framework enhances the
model’s sensitivity to both localized irregularities and long-
range dependency patterns. In addition, structure-aware
modeling is incorporated to explicitly encode relational
dependencies and system-level constraints inherent in
industrial processes, enabling more robust discrimination
between normal operational variations and true anomalous
behaviors. Through the joint optimization of multi-scale
representations and structured feature interactions, the
proposed method effectively improves anomaly recognition
accuracy and generalization capability under diverse operating
conditions. The overall modular architecture of the proposed
framework is illustrated in Figure 1.



Figure 1. Overall model architecture diagram

The overall architecture consists of a data encoding module,
a feature enhancement module, and an anomaly scoring module.
First, the original multidimensional sequence is converted into
a representation vector sequence in the embedding space
through the input mapping function, which is formally
expressed as:
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Where T represents the time step and d represents the
feature dimension. This embedding process not only retains the
original structure of the input signal, but also provides a basis
for subsequent context modeling.

In the feature modeling process, multi-scale residual blocks
are introduced to capture local and global change trends at
different scales. Each layer uses a gated attention mechanism to
perform weighted fusion on the input sequence while retaining
the cross-layer residual connection of the original information,
which can be expressed as:
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)(MSBlock represents the multi-scale convolution
module, and LayerNorm is used for normalization. To further
improve the model's attention to key areas, this paper
introduces a structural attention mask in the middle layer,
which dynamically adjusts the importance of each channel
through learnable parameters, defined as:
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Where  is the Sigmoid activation function, )(GAP
represents global average pooling, and  is the element-by-
element multiplication operation.

In the anomaly scoring stage, a dual-branch structure of
reconstruction and prediction is constructed. The reconstruction
branch restores the input feature sequence through the
autoencoder structure, and the prediction branch estimates the
future state based on the historical window. The two generate
reconstruction error recL and prediction error predL
respectively. The loss function is as follows:
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The final comprehensive anomaly scoring function is
defined as:
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Where ]1,0[ is the weighting coefficient used to
balance the two error contributions.

In order to improve the model's time series perception
ability, a sliding window strategy and a normalized contrast
encoding mechanism are also introduced to make the anomaly
distribution in different time segments more separable. The
overall method can automatically construct the time series
anomaly score distribution without relying on prior label
information, thereby achieving comprehensive modeling and
detection of sudden, intermittent and systematic anomalies in
industrial data.

4. Dataset
This study uses the publicly available SMAP (Soil Moisture

Active Passive) dataset as the main source of experimental data.
The dataset was originally collected by NASA during an actual
space monitoring mission. It has been widely used in time
series anomaly detection and has strong practical relevance.
The SMAP dataset contains multiple subsystem sensor
readings from satellite system components. It has high
dimensionality and a long time span, which reflect the complex
dynamic behavior and potential fault patterns in industrial
systems.

Each subsystem channel in the dataset corresponds to
different monitoring indicators of specific components. The
sampling frequency is uniform. The data consists of continuous
multivariate time series, which exhibit strong temporal
dependencies and structural stability. During preprocessing, the
data were standardized, and anomaly segments were labeled.
This supports a unified comparison between supervised and
unsupervised detection methods. The proportion of anomaly
samples is much lower than that of normal samples, which
closely aligns with the real-world distribution of “ rare
anomalies” in industrial scenarios.

One important characteristic of the SMAP dataset is that
most anomalies are structural, caused by system shifts or
component deviations. These include both sudden changes and
gradual trends with periodic disturbances. This makes the
dataset highly suitable for evaluating the ability of detection
methods to capture potential state transitions and complex trend
variations. It provides a solid foundation for validating the
structure-aware anomaly detection framework proposed in this
study.

5. Experimental Results
In the experimental results section, the relevant results of

the comparative test are first given, and the experimental
results are shown in Table 1.



Table 1: Comparative experimental results

Method Precision Recall F1-Score
USAD[16] 87.2 82.6 84.8
OmniAnomaly[17] 89.4 85.0 87.1
MSCRED[18] 91.1 86.3 88.6
TranAD[19] 92.5 88.7 90.5
Ours 94.8 91.3 93.0

As shown in the table, different models exhibit varying
levels of performance on the anomaly detection task. Overall,
there is a clear trend of improvement in recent years. Early
models such as USAD and OmniAnomaly demonstrate a
certain degree of robustness under unsupervised settings.
However, they show relatively low scores on the Recall metric.
This suggests that these models still miss some anomalies,
especially when identifying rare abnormal samples in high-
dimensional and dynamic industrial data. The results indicate a
limitation in the ability of traditional architectures to detect
system-level anomalies.

MSCRED, a model based on multi-scale residual learning,
achieves a better balance between Precision and Recall. This
shows that its structured feature enhancement contributes to
more effective modeling of complex anomaly patterns.
However, the model still struggles with long-term dependency
modeling. It may misclassify sequences where sudden changes
and trend-based anomalies are intertwined, limiting its
applicability in highly dynamic industrial environments.

TranAD represents the recent trend of using Transformer-
based architectures in anomaly detection. This model enhances
global temporal modeling through multi-head attention
mechanisms. It achieves significant improvements in both
Recall and F1-score. In particular, its ability to capture
complex behavior patterns surpasses that of traditional models.
These results suggest that combining structure-aware modeling
with deep semantic representations provides a clear advantage
in tracking anomaly evolution, and serves as a key path for
further performance improvement.

The proposed method in this study achieves leading
performance across all three core metrics. This confirms the
effectiveness of introducing structural attention and multi-scale
feature reconstruction strategies for modeling anomalies in
complex industrial data. The improvement in F1-score, in
particular, shows that the model reduces the missed detection
rate while maintaining high accuracy. These findings further
validate the practical value and effectiveness of the designed
structure-enhanced and joint modeling framework in real
industrial scenarios. This result underscores the importance of
structure-aware approaches in improving the robustness of
intelligent monitoring systems in industry.

This paper further gives the recognition stability analysis
under the condition of scarce abnormal samples, and the
experimental results are shown in Figure 2.

Figure 2. Analysis of recognition stability under the
condition of scarce abnormal samples

As observed in the figure, with the gradual increase in the
proportion of anomaly samples, the model shows a steady
improvement in Precision, Recall, and F1-score. This indicates
that the proposed structure-aware model maintains strong
detection ability even under conditions of anomaly scarcity.
When the anomaly ratio is low, such as 0.5% or 1%, Recall
shows a slight decline. However, the overall F1-score remains
at a high level, suggesting that the model can still achieve a
good balance when learning from limited anomaly data.

It is particularly noteworthy that the curves of F1-score and
Precision remain close across different anomaly proportions.
This reflects the model's stable localization ability for
anomalies, without showing a clear tendency toward false
positives or missed detections. This demonstrates that the
proposed method retains reliable discriminative robustness
even in scenarios with imbalanced distributions and extreme
sample scarcity. Compared with traditional methods, the model
achieves stronger generalization by leveraging structural
modeling, which helps reduce overfitting risks that arise from
dependence on sample density.

On the other hand, the overall trend of the anomaly score
shows a decline as the anomaly proportion increases. This
indicates that the model makes clearer distinctions between
normal and abnormal distributions, and the confidence in
anomaly scoring improves accordingly. This result suggests
that the dual-branch scoring structure provides good stability
and separation in capturing potential anomalies. It also ensures
consistent anomaly detection responses under varying data
conditions.

In summary, the experimental results confirm that the
proposed method maintains strong performance even when
anomaly samples are extremely rare. It demonstrates high
detection stability and structural robustness. This capability is
especially important in industrial scenarios where systems
operate at high frequency but exhibit anomalies at low
frequency. It provides a solid theoretical and practical
foundation for real-world deployment and application.



6. Conclusion
This study addresses the key challenges of anomaly

detection in industrial data by proposing an AI-driven method
that combines structure-aware modeling with multi-scale
representation learning. By introducing a multi-layer residual
feature enhancement module and a structural attention
mechanism, the model can better capture dynamic patterns and
latent structural features within time series data. This enables
more accurate identification of abnormal states. Based on a
dual-branch scoring mechanism, the method integrates both
reconstruction and prediction perspectives, which enhances its
adaptability to various anomaly types. The overall framework
does not require a large number of labeled anomaly samples,
making it well-suited for unsupervised detection and effective
under conditions of data imbalance and label scarcity common
in industrial environments.

A series of sensitivity experiments further validate the
robustness of the proposed method under various disturbance
conditions. The results show that the model remains stable
when faced with operational shifts, sample perturbations, and
data sparsity. It maintains strong discrimination and structural
consistency across different anomaly ratios, input perturbations,
and hyperparameter settings. This demonstrates its
generalization ability and suitability for real-world engineering
applications. In practical industrial scenarios, the method can
be widely applied to equipment health monitoring, process
control, and intelligent alert systems. It provides strong support
for enhancing system intelligence and operational safety.

From a system integration perspective, the proposed
detection framework offers strong deployability and scalability.
It is compatible with edge computing nodes and distributed
platforms, enabling fast response and efficient processing of
real-time industrial data. The model is structurally simple, with
adjustable parameters, which allows it to operate in resource-
constrained environments. This makes it a feasible solution for
intelligent monitoring in industrial Internet of Things
architectures. In addition, its ability to provide interpretable
representations of anomaly semantics offers a reliable data
foundation for downstream automation and decision-making
systems. This contributes to the evolution of intelligent
industrial systems toward self-adaptive and self-diagnostic
capabilities.

Looking ahead, several research directions remain worth
exploring. One is how to further improve the generalization of
the model across complex operating conditions and multimodal
data, which is key to building universal industrial detection
systems. Another is the integration of interpretability
mechanisms with human-in-the-loop feedback, which can
enhance the credibility and usability of anomaly detection
results. Furthermore, combining this method with real-time
control strategies or digital twin platforms may help advance
industrial monitoring systems from static recognition to
dynamic regulation. This would lay a forward-looking
technical foundation for next-generation intelligent
manufacturing and smart factory development.
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