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Abstract: This paper proposes an automatic anomaly call chain localization method based on graph neural networks to address
the challenge of anomaly detection in modern microservice systems. The method constructs a directed graph using the invocation
relationships between microservices. The operational features of service nodes are encoded as node attributes. A graph neural
network is then used to model the structure of the call chain in depth, enabling precise identification of potential anomaly nodes.
Unlike traditional methods that rely on static rules or single-point metric analysis, the proposed model incorporates structural
awareness and multi-hop information aggregation. This allows it to effectively capture the structural patterns of anomaly
propagation within service call paths. To evaluate the model's performance, a series of experiments were conducted. These assess
the model under different conditions, including feature combination strategies, system load intensity, anomaly type diversity, and
propagation path depth. The experimental results show that the proposed method achieves significantly better performance than
representative public methods in recent literature, across key metrics such as F1 Score, Precision, and Recall. The model
demonstrates higher accuracy and stability. Furthermore, the method maintains strong identification capability in handling
complex anomaly propagation patterns, high-concurrency loads, and multi-level service chains. This highlights its practical
applicability in real engineering environments. The proposed method provides an effective modeling framework for intelligent
anomaly localization in large-scale microservice systems. It also advances the application of graph learning techniques in system
operations and maintenance.
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1. Introduction
In modern distributed system architectures, microservices

have become a widely adopted design paradigm. They offer
modularity, flexibility, and scalability for various Internet
applications and enterprise systems. As business logic becomes
increasingly complex, the number of microservices grows
exponentially. The interactions among services are becoming
more intricate, resulting in a highly dynamic and heterogeneous
system[1,2]. While this change improves maintainability and
development efficiency, it also introduces new challenges in
system stability and fault diagnosis. When performance
degradation, request failures, or response delays occur, quickly
and accurately locating the faulty service from a large and
dynamic call chain becomes a critical issue in operations and
development[3].

Traditional anomaly localization methods mainly rely on
rule engines, static configurations, or manual expertise. These
approaches often fail under complex scenarios such as
concurrent multi-service calls, asynchronous message passing,
and long-span invocation chains. On the one hand, the call
chain may vary based on user request paths, service versions,
or deployment environments, making it hard for static rules to
provide full coverage. On the other hand, anomaly propagation
can be nonlinear or non-local. Minor fluctuations in upstream
services may cause severe failures downstream in specific
conditions. These factors increase the difficulty of fault tracing.

Therefore, a more generalized and intelligent localization
method is urgently needed to handle the complex behavior
patterns of microservices in real-world settings[4].

In recent years, observability infrastructures have advanced
significantly. Techniques such as distributed tracing, metrics
monitoring, and log collection have become mature. These
enable systems to produce large volumes of structured data
related to service behavior. Among them, trace data is
particularly valuable. It presents the dependency and call paths
between services in the form of directed graphs, making it
highly useful for failure diagnosis. This inherent graph
structure makes it feasible to apply graph neural networks. As a
deep learning method for graph-structured data, graph neural
networks provide powerful representation capabilities. They
can capture dependencies, patterns, and trends among nodes,
offering a new direction for anomaly localization in
microservices[5].

Using graph neural networks for anomalous call chain
localization enables deep mining of both topological structures
and dynamic behavior patterns. It avoids the limitation of
relying solely on single-node information. By modeling and
learning from the call graph, it becomes possible to identify
abnormal propagation paths, detect bottleneck services, and
uncover latent faults. Graph neural networks also exhibit a
degree of transferability. They can adapt to call graph changes
across time and environments, maintaining robustness and real-



time performance during system operation. Compared to
traditional methods, this approach aligns better with the
operating logic of modern microservices and offers greater
engineering value[6].

In summary, with the widespread adoption of microservice
architectures and increasing system complexity, traditional
anomaly localization methods face challenges in both
efficiency and accuracy. In this context, the automatic
localization of anomalous call chains based on graph neural
networks addresses the urgent need for intelligent operations in
distributed systems. It provides theoretical and technical
support for improving system stability, accelerating anomaly
response, and optimizing resource allocation. This study aims
to explore key issues and core mechanisms in this direction and
promote the integration and practical application of intelligent
operation technologies in microservice environments.

2. Related work
In the field of microservice anomaly localization, existing

research mainly focuses on static rule-based methods, statistical
learning models, and graph-based analysis. Traditional static
rule methods usually rely on predefined monitoring thresholds
and manually crafted anomaly rules. These methods evaluate
system performance metrics such as CPU usage, memory
consumption, and request latency[7]. While effective in
monolithic systems, they face serious limitations in
microservice architectures. Complex inter-service relationships
and dynamic invocation paths often lead to anomalies that
involve multiple nodes or spread across nodes. As a result,
static methods struggle to accurately identify root causes.
Moreover, these approaches heavily depend on expert
knowledge, lack adaptability, and incur high maintenance costs.
They become increasingly inadequate as the system scales or
the business changes frequently[8].

With the growing application of machine learning in system
operations, some studies have introduced supervised or
unsupervised learning methods. These approaches model and
predict system metrics using learning-based techniques.
Typically, they score anomalies for individual services based
on time series modeling. This helps support anomaly detection
and localization. However, the invocation behavior in
microservice systems is inherently relational and structured.
Relying solely on time series or single-node metrics fails to
capture causal links and dependencies between services. This
modeling approach often overlooks complex propagation
patterns in collaborative anomalies, leading to higher false
positive and false negative rates. It performs especially poorly
under scenarios involving multi-point resonance or cascading
failures across upstream and downstream services[9].

To address the graph-structured nature of microservice
systems, some studies have explored anomaly localization
based on invocation chain graphs. Invocation chains represent
the execution paths of service requests and record the
propagation process across services. They contain rich
temporal and topological information. In these graphs, services
are represented as nodes and invocation relationships as edges.
Anomalies often form specific substructures or path patterns in
the graph[10]. Therefore, graph-based detection methods are

better suited to describe inter-service interaction behavior.
Some research has employed graph mining or path-matching
techniques to identify abnormal paths. Compared to traditional
models, these methods show improved precision and better
identification of anomaly propagation across services. However,
they still suffer from challenges in manual feature design and
limited model generalization.

In recent years, the emergence of graph neural networks has
introduced a new modeling paradigm for microservice anomaly
localization. Graph neural networks perform feature
aggregation and propagation over nodes and their neighbors.
This enables the automatic learning of structural features and
behavioral patterns in service invocation chains. Compared to
traditional graph analysis methods, graph neural networks
support end-to-end modeling. They do not require manual
feature engineering and offer stronger representation and
generalization capabilities. This approach is particularly
suitable for capturing dynamic service dependencies and
anomaly propagation paths. It provides a new technical
foundation for efficient and accurate anomaly localization. As a
result, graph neural network-based research is becoming a key
direction in intelligent microservice operations. It holds
significant theoretical value and practical potential.

3. Method
This research method is based on the call chain data of

the microservice system, constructs a directed graph to
represent the call relationship between services, and uses
graph neural networks to model and reason about the graph
structure, thereby realizing the automatic location of abnormal
services. Specifically, each call chain in the system is regarded
as a subgraph containing multiple service nodes and their call
edges. The nodes represent microservice instances, and the
edges represent the call directions. Each node contains not
only the basic characteristics of the service (such as latency,
error code, call frequency, etc.) but also its contextual
information in the link. The model architecture is shown in
Figure 1.

Figure 1. Overall model architecture diagram
We represent the raw features of each service node as a

vector d
i Rx  , where d represents the feature dimension.

In order to capture the dependency and exception
propagation patterns between services, we construct a service



call graph ),( EVG  , where V represents the set of service
nodes and E represents the call edges between services. In the
graph neural network, the representation of each layer of
nodes is updated by the features of neighboring nodes. We use
a propagation mechanism based on graph convolution, and the
representation of node i in layer l is:
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Where )(iN represents the neighbor set of node i, ijc

is the normalization coefficient, )(lW is the weight matrix of
the lth layer,  is the activation function, and )1( l

jh is the

representation of the neighbor nodes in the l-1th layer.
To enhance the model's sensitivity to abnormal

propagation paths, we introduce an attention mechanism to
perform weighted aggregation on neighbor nodes, that is,
when updating node representations, we consider the different
importance of neighbors to the abnormal state of the current
node. The weighted information received by node i from
neighbor j is:
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This mechanism improves the model's ability to identify
key propagation paths and effectively strengthens the focus on
potential abnormal service nodes.

Finally, after updating the multi-layer graph neural
network, we map the representation of each node to the
abnormal score space to predict whether the service is in an
abnormal state. The prediction process is implemented through
a simple feedforward network, defined as:
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Where w and b are learnable parameters, and
)10( ，iy represents the abnormal probability of node i. The

entire model is trained by minimizing the binary cross entropy
loss function, and the objective function is:
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Where }1,0{iy is the real label of the service node.
This method can effectively capture abnormal patterns in
complex call chains and realize automatic identification and
location of abnormal services.

4. Experimental Results
4.1 Dataset

This study uses the Alibaba Cluster Trace 2018 as the
primary dataset to construct microservice call graphs and node
features. The dataset originates from a real large-scale
distributed computing cluster. It includes extensive task
scheduling, resource usage, and instance-level execution
information. The data covers millions of containers and nodes.

Organized by timestamps, it records fine-grained interactions
between different service instances. This provides a rich and
realistic foundation for studying anomaly detection in complex
microservice architectures.

Key fields in the dataset include task ID, container ID,
resource usage such as CPU and memory, task type,
scheduling status, and time intervals. Through appropriate
preprocessing and correlation analysis, it is possible to
construct a call graph containing both node features and edge
relationships. This graph serves as input for graph neural
network training. Each node represents a specific microservice
instance. Each edge represents a service request call. Time
series data can be mapped to dynamic attributes or feature
sequences in the graph structure.

This dataset is chosen due to its strong real-world
business background and complex system behavior patterns. It
captures both normal and abnormal operational states. It also
reflects interaction patterns among microservices under
different loads and failure scenarios. The authenticity and
diversity of this data make it an ideal choice for anomaly call
chain localization tasks. It helps enhance the generalization
ability and practical value of the model in real-world
applications.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the

experimental results are shown in Table 1.

Table1: Comparative experimental results

Method F1-Score Precision Recall
Ours 91.4 89.7 93.2
GCN-Micro[11] 86.3 84.1 88.6
TraceAnomaly[12] 82.7 80.5 85.1
DeepTrace[13] 78.9 76.3 81.7

The experimental results show that the proposed method for
automatic anomaly call chain localization based on graph
neural networks significantly outperforms baseline models in
terms of F1-Score, Precision, and Recall. The F1-Score reaches
91.4%, indicating a well-balanced performance between
accuracy and completeness. This result highlights the strength
of graph neural networks in capturing complex structural
dependencies among microservices. In scenarios with multi-
hop service calls and unclear anomaly propagation paths,
graph-based modeling significantly improves the identification
of abnormal nodes.

In terms of Precision, the proposed method achieves 89.7%,
higher than all baseline models. This indicates fewer false
positives in anomaly node detection. Due to long and dynamic
call chains, traditional methods often mistake short-term
fluctuations as anomalies. By aggregating multi-layer
contextual information of each node, the proposed model
reduces such misclassifications. Moreover, the attention
mechanism assigns different weights to neighboring nodes,
allowing the model to focus more on key points along the
anomaly path. This improves decision precision.



For Recall, the method achieves 93.2%, noticeably higher
than public methods such as GCN-Micro, TraceAnomaly, and
DeepTrace. This shows a stronger ability to identify actual
anomalous nodes. High recall is especially important in
microservice environments where rapid identification of the
root cause is critical. It supports system stability and shortens
recovery time. Traditional models often rely on local indicators
or sequential features. They tend to miss cross-node anomaly
patterns. Graph neural networks can integrate features across
nodes, addressing this limitation effectively.

Overall, the strong performance across all metrics is
attributed to the structural modeling strategy based on call
graphs. Unlike time-series models that rely only on metric
fluctuations or traditional models that analyze nodes in
isolation, graph neural networks integrate global information.
They can learn potential anomaly propagation paths and inter-
node influences within the call chain. This aligns well with the
nature of structural anomaly diffusion in microservice systems.
It also enhances the adaptability and practical value of the
method in real-world deployments.

This paper also gives an experiment on the influence of
node feature combinations on positioning accuracy, and the
experimental results are shown in Figure 2.

The results in the figure show that the combination of node
features has a clear impact on anomaly localization
performance. When multiple features are integrated, all
evaluation metrics improve significantly. Although single
features (F1, F2, F3) can support anomaly detection to some
extent, their performance varies. This indicates that different
feature types have different abilities in capturing anomaly
propagation patterns. Among them, F2 performs slightly better
when used alone, suggesting higher discriminative power.
However, its combination with other features still leaves room
for further improvement.

When combining features as F1+F2 or F1+F3, both F1-
Score and Precision increase. This indicates that multi-source
features can complement each other during graph neural
network propagation, enhancing the completeness of node
representations. Notably, the integration of F1+F2+F3 achieves
the best results across all metrics. This suggests that
comprehensive feature representation helps the model better
capture abnormal patterns between service nodes. The findings
also confirm the importance of introducing multi-dimensional
features into graph structures, as they provide richer contextual
information for the model.

In terms of Precision, the trend shows a clear decline in
false positives as more features are combined. This proves that
high-quality feature combinations effectively reduce the
misclassification of normal nodes. In microservice systems,
false positives often trigger unnecessary diagnostic procedures.
Therefore, improving Precision has practical value for
operational efficiency. The model enhances its ability to locate
anomaly paths through deep neighbor propagation and multi-
feature aggregation mechanisms.

Figure 2. Experiment with the influence of node feature
combination on positioning accuracy

The consistent improvement in Recall further demonstrates
the benefit of multi-feature fusion in identifying abnormal
nodes. Under the F1+F2+F3 configuration, the model can
identify nearly all anomalous service nodes. This is particularly
valuable for handling complex scenarios in microservice
systems, such as chained propagation and multi-hop anomaly
paths. Overall, the analysis shows that node feature selection
and combination are key factors influencing the effectiveness
of graph neural network-based anomaly detection. Designing
appropriate feature fusion strategies is essential for improving
model accuracy.

This paper also presents a comparative experiment on the
robustness of the model under different load scenarios, and the
experimental results are shown in Figure 3.



Figure 3. Comparative experiment on model robustness
under different load scenarios

The results in the figure indicate that the proposed method
demonstrates strong stability under different system load
scenarios. The F1 Score consistently remains at a high level.
This suggests that the graph neural network model has good
robustness. It can adapt to the complex environments of real-
world microservice systems, where load frequently fluctuates
and call chain structures change dynamically. The model
performs most stably under low and medium loads. This
implies that with less resource pressure, the structure of the call
chain is clearer, and the anomaly propagation path is easier to
capture.

Under high load and burst load conditions, the model's
performance shows a slight decline but remains within an
acceptable range. This performance drop is mainly due to the
increased overlap of service requests and signal interference
caused by a surge in traffic between services. These factors
make anomaly node identification more challenging. However,
the model integrates both upstream and downstream structural
information and supports multi-hop information propagation.
As a result, it maintains a certain level of accuracy in complex
paths and avoids the sharp performance degradation seen in
traditional methods under such conditions.

The performance recovery under unstable load conditions is
noteworthy. This scenario simulates a system with frequent and
irregular fluctuations. In such highly dynamic call graphs, the
structural modeling capability of the graph neural network
becomes more apparent. Through continuous feature
aggregation among nodes, the model can detect structural
patterns of anomaly propagation under non-stationary
conditions. This further demonstrates the model's adaptability
to changes in graph structure. It is suitable for long-term
deployment in real production environments.

In summary, the experiments confirm that the proposed
method maintains reliable detection performance across
various load conditions. It demonstrates practical engineering
value and strong environmental adaptability. Compared with
traditional algorithms that rely heavily on fixed data
distributions, the graph neural network model is better suited to
handle dynamic dependencies and high variability in

microservice systems. This highlights the broad applicability
and real-world relevance of the proposed approach for
intelligent anomaly localization.

This paper also presents an experiment on the impact of
anomaly-type diversity on the generalization ability of the
model, and the experimental results are shown in Figure 4.

Figure 4. Experiment on the impact of anomaly-type
diversity on model generalization ability

The experimental results in the figure show that the
proposed model maintains a high overall F1 Score when
handling various types of anomalies. This demonstrates strong
generalization ability. However, the model's detection
performance varies across anomaly types. This suggests that
the complexity of different anomaly categories still affects the
model's performance. The best results are observed for Timeout
and Packet Loss anomalies. These types have clear temporal
characteristics or strong upstream-downstream propagation
patterns. This aligns well with the graph neural network's
mechanism, which emphasizes structural propagation features.

In contrast, the model performs slightly worse on hidden
anomalies such as Memory Leak and Queue Overflow. These
anomalies are usually non-instantaneous. Their signals spread
slowly or are masked by multi-level services in the call chain.
This makes the modeling task more difficult. Even so, the
model still performs within an acceptable range. This indicates
that the graph neural network has a certain capacity to represent
weak propagation anomalies. Future work could enhance
temporal modeling or causal chain representation between
upstream and downstream services.

For anomalies such as CPU Spikes, Disk Error, and Service
Hang, the model shows moderately stable performance. These
types often involve resource-level disruptions and can trigger
chain reactions across nodes. The graph-based model leverages
multi-hop aggregation to sense the impact range. This
contributes to better anomaly identification. In particular, the
improved results on Disk Error suggest that the model can
capture low-frequency but high-impact anomalies. This is
especially important for ensuring stability in complex
microservice systems.

In summary, the experimental results demonstrate that the
model has strong generalization across different anomaly types.
It maintains stable performance under various failure
mechanisms. This capability is crucial in real-world



microservice operations, where anomaly patterns are diverse
and cannot be fully covered by training data. The deep
exploitation of structural information by the graph neural
network enhances the model's tolerance to unseen anomalies
and broadens its recognition scope. This confirms the
practicality and scalability of the proposed method for
intelligent anomaly localization tasks.

This paper also presents a detailed experiment designed to
investigate the effect of abnormal propagation path length on
the model's recognition capability. The focus of this experiment
is to examine how the number of hops, or the distance that an
anomaly signal must travel through the service call chain,
influences the model’s ability to accurately identify anomalous
nodes within the system. The experimental setup considers
varying propagation path lengths, allowing for an in-depth
analysis of how structural depth in the call graph impacts the
overall detection performance of the proposed graph neural
network model. By evaluating the model under different path
length conditions, this experiment aims to better understand the
relationship between anomaly diffusion patterns and the
structural modeling capacity of the system. The corresponding
results and observations are visually represented and
summarized in Figure 5.The experimental results show that the
length of the anomaly propagation path has a significant impact
on the model's detection capability. As the path becomes longer,
the F1 Score exhibits a clear downward trend. This indicates
that when anomaly signals must pass through more hops from
the source node to the target node, the model's overall
judgment becomes less effective. Since the message-passing
mechanism in graph neural networks relies on feature
aggregation from neighboring nodes, longer paths may lead to
signal dilution or interference from structural noise. This
degrades the final decision accuracy.

The downward trend in the Precision metric further
confirms that the model is more prone to false positives in the
presence of long propagation paths. This issue is particularly
evident in microservice systems. When the call chain becomes
deep, some normal service nodes located near the anomaly path
may be incorrectly identified due to their structural proximity.
Although the proposed method incorporates some structural
awareness, it still faces the problem of feature attenuation when
dealing with deep anomaly chains. This suggests that future
research should introduce stronger modeling capabilities for
long-range dependencies to reduce false positives.

The changes in Recall indicate that the model becomes less
capable of detecting true anomalous nodes as the path length
increases. In particular, Recall drops significantly under the 5-
hop and 6-hop conditions. This shows that anomaly signals
tend to be lost or mixed with background noise during long-
path propagation in complex call structures. The result
highlights the importance of building deeper graph neural
architectures or incorporating global structural awareness.
These enhancements are necessary to ensure effective tracking
of anomalies that propagate across multiple service layers in
large-scale microservice systems. Overall, the experiments
confirm that path depth is a critical factor. It significantly
influences both the robustness and boundary of the model's
detection performance.

Figure 5. Experiment on the influence of abnormal
propagation path length on model recognition ability

5. Conclusion
This study addresses the problem of automatic anomaly call

chain localization in microservice systems. A graph neural
network-based method is proposed, which effectively combines
the graph representation of system structure with node behavior
features. By performing multi-layer perception and aggregation
on the call chain graph, the method improves the accuracy of
identifying anomaly propagation paths. It overcomes the
limitations of traditional rule-based or single-metric analysis
approaches. It is capable of handling complex scenarios such as
multi-hop dependencies and upstream collaborative failures.
The method also demonstrates strong generalization and
robustness. Experimental results show that the proposed
approach consistently achieves stable and high performance
across various anomaly types and operational conditions,
indicating its practical value.

From multiple experimental dimensions, the proposed
model shows both stable and responsive performance when
faced with challenges such as anomaly diversity, system load
variations, and extended propagation paths. The ability of
graph neural networks to model structural information in



microservice environments provides a new perspective for
anomaly localization tasks. This enables a shift from
experience-based operations to data-driven intelligent
management. The method offers scalable technical support for
microservice operations, helping to improve fault response
efficiency, reduce manual intervention, and ensure the stable
operation of complex business systems.

This work not only makes a practical contribution to the
field of intelligent operations but also provides a reference
paradigm for applying graph neural networks in engineering
systems. Similar problems of anomaly propagation exist in
systems such as edge computing, cloud-native architectures,
and distributed databases. The proposed modeling approach
has strong transferability and adaptability. It can be applied to
larger and more complex networked systems. It also opens new
paths for integrating graph learning with observability
technologies, promoting the advancement of intelligent
monitoring and autonomous operations.

Future research may introduce time-aware mechanisms to
model the evolution of call chains. This would enhance the
model's ability to perceive the timing and duration of anomalies.
Additionally, improving model interpretability could allow it to
generate traceable anomaly paths and causal analysis outputs,
supporting human decision-making. Incorporating advanced
techniques such as federated learning and incremental graph
learning into the anomaly detection framework may further
enhance adaptability in cross-cluster, heterogeneous, and
dynamic environments. This would support the development of
more intelligent, efficient, and sustainable operational systems.
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