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Abstract: This paper proposes a federated fine-tuning framework that integrates differentiated distillation guidance and
modular structure injection to address key challenges in distributed fine-tuning of large language models. These challenges
include unstable semantic transfer, sensitivity to structural perturbations, and low communication efficiency. Without transmitting
raw data, the framework introduces a differentiated distillation mechanism to guide local client models in aligning with the global
semantic structure. This reduces representation drift under non-independent and identically distributed multi-task settings.
Meanwhile, a modular structure injection mechanism applies structural perturbations to key components such as attention layers
and feedforward networks. This guides the model to learn robust representations under local variation, enhancing the consistency
and stability of cross-task representations. The two mechanisms are designed to be decoupled yet jointly optimized. They can be
flexibly embedded into mainstream pre-trained language models and enable communication-efficient distributed knowledge
optimization under the federated learning framework. Experiments on multiple task-incremental subsets verify the effectiveness
of the proposed method. Through comprehensive main experiments, ablation studies, and hyperparameter sensitivity analyses, the
model is evaluated across multiple dimensions, including semantic retention, structural stability, generalization ability, and
parameter efficiency. The results show that the proposed method outperforms existing representative approaches and
demonstrates strong practical value and adaptability.

Keywords: Federated distillation; structural perturbation; module injection; semantic alignment

1. Introduction
Driven by the rapid development of large language models,

natural language processing systems are now capable of
handling multi-task, multilingual, and cross-domain semantic
understanding. As model sizes continue to grow, traditional
centralized training and fine-tuning methods face increasing
limitations in terms of resource cost, privacy protection, and
scalability. In particular, domains such as healthcare, finance,
and public services impose strict requirements on data security
and on-device deployment[1]. How to achieve low-cost
adaptation and efficient updating of large models has become a
key barrier to the practical deployment of intelligent systems.
Therefore, developing a distributed fine-tuning paradigm for
large language models that supports privacy preservation,
efficient collaboration, and structural adaptability holds
significant practical value and research importance[2,3].

Although federated learning provides a foundational
framework for collaborative modeling in distributed settings,
most existing methods focus on lightweight architectures or
small-scale models[4]. These approaches struggle to balance
stability and efficiency when applied to large language models
with high semantic complexity and structural heterogeneity. On
one hand, unified distillation mechanisms often fail to
accommodate semantic shifts across clients, resulting in weak
knowledge transfer or misaligned learning. On the other hand,
current fine-tuning strategies cannot model internal structural
dynamics, leading to representational inconsistency or
structural collapse during task increments or local perturbations.

These limitations significantly affect the generalization and
usability of large models in multi-task and cross-client
scenarios[5,6].

To address these challenges, this paper proposes a
distributed fine-tuning method for large language models that
integrates federated distillation and structural injection. Within
a federated optimization framework, the method introduces two
components: a Differentiated Distillation Guidance (DDG)
mechanism and a Modular Structure Injection (MSI) strategy.
These components enhance semantic alignment and structural
stability, respectively[8]. The method aims to solve key issues
such as weak cross-client knowledge transfer and unstable
representation spaces. It is modular, lightweight, and scalable.
It can be applied to various language model architectures and
supports secure and efficient task adaptation across diverse
client environments[9].

This study presents two main innovations. First, the
Differentiated Distillation Guidance (DDG) mechanism is
proposed to guide client learning through dual pathways of
semantic aggregation and semantic alignment. This enhances
the stability of semantic transfer in non-independent and
identically distributed scenarios. Second, the Modular Structure
Injection (MSI) mechanism introduces structural perturbations
into key sub-modules of the model. This guides the model to
learn robust responses to local variations, improving
consistency and robustness of the representation space during
task switching and structural drift. Together, these two
mechanisms provide structural support and optimization



pathways for enhancing the performance of large language
models in distributed semantic modeling and incremental task
fine-tuning[10,11].

2. Prior Work
2.1 Large Language Model Fine-tuning Algorithm

Federated learning is a distributed collaborative modeling
paradigm designed to enable joint model training across
devices or domains without transferring raw data. Its core idea
is to update model parameters locally at each participant and
then upload the updated parameters to a central server for
aggregation[12]. This process builds a globally shared model.
The mechanism offers natural advantages in protecting user
privacy and reducing the risk of data leakage. It is particularly
suitable for scenarios involving dispersed and sensitive data.
As practical applications grow in complexity, the traditional
federated averaging strategy has shown limitations when
dealing with non-independent and identically distributed data
and device heterogeneity[13]. This has driven researchers to
explore more robust and scalable optimization mechanisms to
enhance the applicability of federated learning in real-world
environments.

Knowledge distillation was initially proposed as a model
compression technique. It leverages soft label information
generated by a high-capacity model to guide the training of a
lightweight model. This allows for effective compression while
maintaining performance. In federated learning, this idea has
been re-integrated into a mechanism known as federated
distillation. Instead of aggregating model parameters directly,
federated distillation transmits soft prediction probabilities or
intermediate representations[14,15]. This enables indirect
knowledge sharing, significantly reducing communication
overhead and improving adaptability to model heterogeneity.
Especially in scenarios where client data is highly imbalanced,
soft labels can effectively capture semantic commonalities
across clients. This helps alleviate model performance
fluctuations caused by sample distribution shifts.

The integration of distillation into the federated learning
framework has led to various forms of knowledge exchange.
Some methods rely on a central server to collect and distribute
knowledge, while others adopt peer-to-peer distillation to
support finer-grained knowledge sharing. In these approaches,
clients do not expose their model parameters or gradients.
Instead, they upload predictions generated from private data,
promoting knowledge aggregation while preserving privacy.
Moreover, as the distillation process can flexibly select
different levels of features or representations for transmission,
the mechanism is especially useful in bandwidth-constrained
environments. It avoids the high cost associated with training
large models and supports adaptation in heterogeneous systems
with diverse client capabilities[16].

To improve the performance of federated distillation in
complex settings, researchers have introduced designs such as
multi-teacher, multi-stage, and cross-client distillation. These
structures aim to enhance semantic alignment and model
collaboration among clients. Based on this, variants of
federated distillation have emerged, incorporating attention
mechanisms, contrastive learning, and perturbation-based

enhancement. These methods improve the accuracy and
generalizability of knowledge transfer[17]. They also
demonstrate scalability and stability in practical tasks,
extending the use of federated distillation to natural language
processing, image recognition, and speech modeling.
Nevertheless, as models grow larger and tasks become more
complex, challenges remain. Improving distillation efficiency,
reducing communication costs, and enhancing model
robustness are still key problems to be addressed[18].

2.2 Fine-Tuning of Large Language Models in Distributed
Settings

Large language models have become fundamental
components of modern artificial intelligence systems due to
their strengths in semantic understanding, context modeling,
and multi-task generalization. However, these models often
contain billions or even hundreds of billions of parameters. The
fine-tuning process consumes significant computational power,
storage, and energy, far exceeding the capacity of ordinary
computing devices. In resource-constrained or multi-terminal
deployment scenarios, traditional full-parameter fine-tuning
becomes overly cumbersome and cannot meet the demand for
efficient and low-cost applications. At the same time, privacy
concerns and data sovereignty issues have increasingly
restricted centralized training on large-scale corpora. As a
result, efficient fine-tuning of large language models in
distributed environments has become a core challenge in
practical applications[19,20].

To address these challenges, several parameter-efficient
fine-tuning techniques have emerged. These include low-rank
adaptation, prompt tuning, and modular injection. Such
methods freeze the backbone parameters and only update a
small number of sub-modules or soft prompts. They
significantly reduce resource consumption during training.
While maintaining model performance, they enhance the
flexibility of the fine-tuning process[21]. However, when
applied to distributed environments, these techniques face new
problems. For example, under heterogeneous data and task
settings, it remains difficult to ensure consistency across fine-
tuned modules on different devices. Semantic drift during
module updates can also occur. These issues directly affect
model stability and generalization, limiting the applicability of
lightweight tuning strategies in distributed settings[22].

In multi-terminal collaborative optimization, fine-tuning
language models must also deal with device heterogeneity,
limited communication bandwidth, and differences in client
task objectives. Some studies have introduced periodic
synchronization, knowledge aggregation, or incremental fusion
on top of local fine-tuning. These approaches aim to balance
global modeling capacity with local customization. However,
they often require many communication rounds and frequent
parameter synchronization, which increases the system burden.
As model size continues to grow, the resource cost of a single
synchronization round rises sharply[23,24]. This severely
impacts overall training efficiency. Therefore, building a fine-
tuning framework for large language models that is highly
adaptive, communication-efficient, and stable in distributed
environments has become an urgent need.



Given the high resource demands of fine-tuning large
models and the constraints of distributed deployment, recent
studies have turned attention to knowledge transfer and
knowledge fusion in distributed optimization. By aligning local
models with global knowledge, it is possible to improve model
capacity without directly sharing parameters. In large language
models, context-sensitive expression makes semantic
consistency and representation compression key performance
indicators. This drives researchers to explore structural
awareness, semantic preservation, and perturbation control
mechanisms for efficient fine-tuning in distributed scenarios.
At the same time, enabling effective knowledge sharing and
unified representation across clients has become a critical
direction for improving model transferability and deployment
feasibility[25].

3. Approach
This study proposes an efficient fine-tuning framework

that integrates federated distillation with structure-aware

strategies to address the challenges of high communication
cost, parameter redundancy, and semantic misalignment in
distributed fine-tuning of large language models. The
framework includes two core innovations. First, a
Differentiated Distillation Guidance (DDG) mechanism is
designed to enhance the consistency and robustness of
knowledge transfer by introducing cross-client semantic
harmonization paths under privacy constraints. Second, a
Modular Structure Injection (MSI) strategy is developed to
apply structure-aware perturbations to key sub-modules of
large language models, guiding the formation of generalizable
semantic representations in multi-client environments.
Together, these two modules alleviate representation drift in
distributed optimization and provide structural support for
building fine-tuning paradigms with low communication
overhead and high efficiency. The overall model architecture
is shown in Figure 1.

Figure 1. Overall model architecture

3.1 Differentiated Distillation Guidance
The Differentiated Distillation Guidance (DDG)

mechanism proposed in this study aims to address common
issues of semantic drift and representation inconsistency in
distributed fine-tuning of language models. DDG builds a
dual-path distillation framework of semantic aggregation and
semantic alignment. Without transmitting raw data, it enables
fine-grained soft knowledge interaction between client models
and the global model. Specifically, the semantic aggregation
path first generates a weighted summary of soft predictions
from all clients to form a global semantic distribution that
captures cross-domain commonalities. Then, the semantic
alignment path applies joint constraints at both the probability
and representation levels using the aggregated distribution and
global intermediate features. This ensures that key semantic

structures are preserved during local updates and that
distributional shift is reduced. Compared to traditional single-
path or unified distillation strategies, DDG dynamically
perceives semantic differences among clients and adjusts
distillation strength accordingly, enabling more robust
knowledge transfer. This mechanism not only improves
semantic consistency in multi-client collaborative training but
also provides a stable representational foundation for
subsequent modules such as structural injection and task
increment. The full workflow and key components are shown
in Figure 2.



Figure 2. DDG Model Architecture

Let the client model be );( kk xf  , where k
represents the model parameters of the k th client and x is
the input sample. Each client represents the prediction of its
local model for the input x as a probability distribution

)(xfp kk  , and the corresponding global teacher model is

);( gg xf  , whose output is )(xfp gg  . To achieve cross-

client distillation guidance, this study first constructs the
distillation loss function as follows:
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Where )||( KL represents the Kullback-Leibler
divergence, which measures the distance between the
prediction distribution of the global model and the client
model. This loss term ensures that the client model maintains
consistency with the global semantics during local fine-tuning.

To further enhance the stability of semantic
representation, semantic alignment loss is introduced to align
representations by comparing the Euclidean distance between
the intermediate layer representations gh and kh :
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This loss term is designed to constrain the representation
space learned by client models to remain structurally
consistent with the global model. It reduces semantic drift
caused by differences in data distribution.

Taking into account the heterogeneity between client
models, DDG further introduces a differentiated distillation

weight function to dynamically adjust the distillation strength
according to the degree of semantic deviation of each client:
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Where k represents the semantic deviation between
the client and the global model,  is the adjustment

parameter, and )1,0(k represents the client distillation
guidance strength. This weighting factor adaptively adjusts the
influence range of the distillation target, achieving
personalized control during the knowledge transfer process.

During the distillation guidance process, it is also
necessary to fuse the soft predictions from all clients for
semantic aggregation to construct an aggregated "teacher"
representation:
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kw can be allocated based on historical performance,
data volume, or number of training rounds to balance client
contributions. This aggregate distribution is used to assist
global model training and maintain its ability to perceive
multi-source semantics.

Finally, the overall optimization objective of the DDG
module is composed of the weighted loss functions above to
form a complete guided objective function:
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A, B, and C are loss weight coefficients used to
balance the contributions of distillation, alignment, and
variance control. This loss function not only ensures the client
model's consistent representation of global semantics but also
leverages the flexible structure of distillation to mitigate
generalization barriers caused by data heterogeneity, providing
a stable knowledge transfer path for fine-tuning large
distributed models.

3.2 Modular Structure Injection

This study introduces a Modular Structure Injection (MSI)
strategy to enhance the structure awareness and robustness of
large language models during distributed fine-tuning. MSI
applies structural perturbations to key substructures of the
model, guiding it to learn stable response patterns to local
variations. This helps mitigate performance degradation
caused by structural inconsistencies or task differences across
clients. Based on modular separability and semantic
controllability, MSI enables differentiated structural regulation
for sub-modules such as attention layers and feedforward
layers. The algorithm architecture is shown in Figure 3.



Figure 3.MSI Model Architecture

Let the client model be );( kk xf  , which consists of
multiple functional modules: embedding layer  , attention
module A , feedforward module F , normalization module
N , etc. For the input sample x , its representation in the
module-level path is:
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Where  represents the module-level serial operation. To

introduce structural perturbations, this study introduces a
perturbation function i inside each module

 NFAM i ,,, to construct a perturbation path:
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The perturbation function i can be in the form of
DropBlock, structural reconstruction, or noise sampling to
simulate the local changes caused by structural perturbations
in the real environment.

To ensure that the representation after perturbation remains
consistent in the semantic space, a module stability loss
function is introduced to constrain the degree of difference in
the model output before and after perturbation:
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Where  represents the joint perturbation injected into
multiple modules. This loss ensures that the model maintains
consistent semantic modeling capabilities under structural
perturbations. In addition to improving the model's sensitivity
to important modules, a module weight regularization term is
further introduced, defined as:

2
2

1

|||| i

M

i
iweightL 





Where i represents the perturbation control factor of the
i th module. This regularization term limits the amplitude of
structural perturbations, preventing the model from
experiencing representation collapse due to excessive
perturbations. Finally, to jointly optimize structural robustness

and semantic stability, the overall objective function of the
MSI module is constructed as follows:

weightstabilityMSI LLL  

Where  is a hyperparameter that balances the two
losses. During training, this objective function guides the
model to learn perturbation-invariant semantic representations
in key modules, enabling it to adapt to structural changes in a
multi-terminal environment. Through the MSI mechanism, the
client model not only enhances structural generalization but
also provides a structural foundation for building knowledge
consistency during the federated distillation process.

4. Experimental Analysis

4.1 Dataset
The dataset used in this study is the publicly available

English-Chinese Learning Dataset released on the Kaggle
platform. It is designed for hierarchical semantic expression
tasks in bilingual contexts and is well-suited for evaluating
language models in cross-lingual semantic understanding and
coreference resolution. Each sample consists of an English
sentence, its corresponding Chinese translation, and a binary
or multi-class label. The annotation system covers multiple
dimensions, including lexical alignment, sentence-level
semantic consistency, and accuracy of coreference relations.
The dataset is sourced from educational corpora and online
language learning platforms. It contains tens of thousands of
samples with relatively balanced label distributions, making it
suitable for incremental task learning.

In this study, the dataset is primarily used to support task-
incremental settings and evaluate semantic transfer capabilities.
By incrementally grouping English-Chinese paired samples,
the model gradually encounters different types of semantic
expressions, such as synonymous translation, cultural
preference differences, and coreference patterns across
languages. This task division provides rich and diverse
semantic features for task-awareness mechanisms. It
effectively tests the robustness and generalization of the
proposed structure-aware injection and alignment strategies
under varying linguistic and expressive patterns.

Within the continual learning framework, this dataset
allows for the division of subtasks based on language pairs,
expression types, or semantic structures. Each stage introduces
new combinations of language expressions and coreference
categories. The model must retain stable representations from
earlier stages while adapting to new semantic shifts. This setup
aligns well with the task-awareness and regularization-based
alignment mechanisms proposed in this study. Overall, the
dataset offers a multilingual and multi-semantic structure
platform that enables comprehensive evaluation of a model's
ability to preserve and adapt to language features during
distributed fine-tuning.

4.2 Experimental setup

All experiments in this study were conducted on a high-
performance computing platform with strong parallel



processing capabilities. The hardware setup includes a server
equipped with four NVIDIA A100 GPUs, each with 80 GB of
memory. It is powered by an Intel Xeon Platinum processor
and 1024 GB of physical RAM to meet the large-scale
computational demands of fine-tuning and distillation for large
language models. The operating system is Ubuntu 22.04. The
deep learning environment is built with CUDA 12.1 and
PyTorch 2.1, using the NCCL library to support efficient
multi-GPU distributed training.

For model construction, this study adopts ChatGLM3-6B,
a widely used Chinese large language model, as the base
architecture. The model is built on a multi-layer Transformer
framework and features strong capabilities in context
understanding and semantic generation. It supports long-text
reasoning and cross-sentence coreference modeling.
ChatGLM3-6B achieves solid general performance across
various Chinese natural language processing tasks. Its model
size of approximately 6 billion parameters and API
accessibility make it well-suited for modular injection and
distributed training. It provides a stable representational
foundation for the task-incremental structural fine-tuning
experiments in this study.

For hyperparameter settings, the global learning rate is
initialized at 2e-5 with a linear warm-up strategy applied over
the first 500 steps. The optimizer is AdamW with a weight
decay coefficient of 0.01. The batch size is set to 32 for each
training round, with a maximum of 30,000 training steps.
Gradient clipping is applied with a threshold of 1.0 to avoid
instability caused by exploding updates. In the federated
distillation mechanism, the temperature is set to 3. The loss
weights for the distillation and main tasks are set to a ratio of
1:1. Perturbation injection is executed every 200 steps. All
experiments are run with fixed random seeds to ensure
stability and reproducibility of the results.

4.3 Experimental Results

1) Comparative experimental results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Model SRS
↑

TTA
↑ RSI ↑ GuS ↑ PE ↓

FedPET[25] 81.6 79.2 77.5 73.4 12.3
LoRA-
FedAvg[26] 83.9 80.7 80.2 75.1 10.5

FedPrompt[27] 85.3 82.1 82.8 76.8 9.40
FedAdapters[28] 86.0 83.5 84.1 78.2 8.10
Ours
(DDG+MSI) 89.7 86.4 87.9 82.5 7.60

As shown in Table 1, from the overall trend, the proposed
DDG+MSI method achieves superior performance across all
evaluation metrics. This advantage comes from jointly
modeling the semantic consistency of knowledge transfer and
the structural stability of modular components. Compared with
existing methods, traditional federated fine-tuning strategies

often lack structural modeling for client-side heterogeneity and
representation drift. As a result, they face performance
bottlenecks in semantic preservation and cross-task adaptation.
By introducing the Differentiated Distillation Guidance
mechanism, DDG enables fine-grained alignment of soft
knowledge without sharing raw model parameters. It helps
client models inherit global semantic structures more
effectively during task transitions and shows stronger
robustness in non-IID settings.

In addition, the Modular Structure Injection mechanism
applies localized perturbations to attention and feedforward
layers. This guides the model to learn invariant representations
under structural changes. The structure-aware regularization
path improves the model's representation stability and
alleviates knowledge forgetting caused by parameter drift in
incremental multi-task scenarios. In contrast, methods like
FedAdapters introduce plug-in modules but do not model
module behavior under perturbations. This limits their ability to
support semantic transfer and representation consistency across
tasks. MSI addresses this gap through joint optimization of
structural modulation and perturbation control. As a result, it
achieves substantial improvements in distribution
generalization metrics such as GuS.

Finally, in terms of parameter efficiency, DDG+MSI
improves semantic retention while keeping fine-tuning costs
low. Unlike traditional federated strategies that rely on heavy
parameter updates, this method performs tuning and distillation
matching at the submodule level. It avoids redundant parameter
usage and enables cost-efficient structural sharing across
clients. Overall, the combination of structural robustness
modeling and semantic alignment explains the method's
superior performance across multiple dimensions. It also
validates the framework's ability to integrate parameter
efficiency, semantic stability, and structural generalization.

2) Ablation Experiment Results

To thoroughly evaluate the actual contribution and
performance impact of each key module, ablation studies serve
as an essential structural assessment method in complex system
modeling. By gradually removing or replacing specific
components of the model, the influence of different
mechanisms on overall performance can be identified. This
helps reveal the internal logic and design boundaries of the
model. Such experiments not only enhance model
interpretability but also provide empirical support for further
mechanism optimization.

Table 2 presents the comparison results between the
complete model and its different variants across several core
metrics. Each variant retains the backbone architecture while
individually removing a module or replacing a key strategy to
observe performance changes. By comparing the performance
fluctuations of these variants, the role of each component in
improving semantic modeling, representation stability, and task
generalization can be intuitively assessed.

Table 2: Ablation Experiment Results

Model SRS ↑ TTA ↑ RSI ↑ GuS ↑ PE ↓



Baseline 81.4 78.6 75.3 71.2 14.8
+ DDG 85.7 82.3 81.1 75.5 12.2
+ MSI 84.6 80.9 83.2 76.4 11.8
+All(DDG+
MSI) 89.7 86.4 87.9 82.5 7.60

As shown in the ablation results in Table 2, from the overall
trend, the Baseline model consistently shows lower
performance across all metrics. This reflects the inherent
limitations of traditional federated fine-tuning in maintaining
semantic consistency and generalization ability. In particular,
the model performs poorly in Representation Stability Index
(RSI) and Generalization under Shift (GuS), indicating
representation drift and transfer degradation under task
increments and structural perturbations. These results suggest
that models without explicit alignment and structural regulation
struggle to address the optimization challenges posed by
distribution heterogeneity and structural variations. This
highlights the need for finer-grained modeling strategies.

After introducing Innovation 1 (DDG), the model shows
significant improvement in Semantic Retention Score (SRS)
and Task Transfer Accuracy (TTA). This indicates that the
Differentiated Distillation Guidance mechanism effectively
aligns client and global semantic structures and reduces
representation drift during task transfer. The mechanism
enables fine-grained control over the knowledge transfer path
through soft semantic alignment and probability modulation. It
helps the client model continuously absorb global knowledge
during local updates without a semantic shift. In comparison,
introducing Innovation 2 (MSI) alone brings a more notable
improvement in representation stability. This shows that the
structure injection strategy directly contributes to modeling
invariance in module behavior. It enhances model robustness
against local perturbations and module degradation.

When both mechanisms are applied together, the model
achieves the best performance across all dimensions. This
demonstrates the complementary effect between semantic
alignment and structural stabilization. DDG provides guided
paths for upstream and downstream semantic consistency,
while MSI introduces resistance to structural perturbation at the
module level. The dual constraints help the model maintain
stable representations and accurate predictions under the
combined complexity of task increment and structural variation.
In addition, the significant improvement in Parameter
Efficiency (PE) shows that the method activates
representational potential without relying on large-scale
updates. It enables the construction of a more adaptive multi-
task representation space and confirms the effectiveness of the
proposed design in combining structural modeling with
semantic alignment.

3) Analysis of the changing trend of the number of
federation rounds on the effect of model alignment

This paper also analyzes the changing trend of the number
of federation rounds on the model alignment effect. The
experimental results are shown in Figure 4.

Figure 4. Analysis of the changing trend of the number of
federation rounds on the effect of model alignment

As shown in Figure 4, the overall trend shows that
increasing the number of federated rounds has a positive
impact on all performance metrics. In particular, during the
first 50 rounds, both Semantic Retention Score (SRS) and Task
Transfer Accuracy (TTA) rise rapidly. This indicates that the
semantic alignment between client models and the global
model becomes progressively stronger with more rounds. The
results confirm the effectiveness of the Differentiated
Distillation Guidance (DDG) mechanism in building stable
semantic pathways through multi-round semantic interaction. It
ensures more consistent knowledge transfer in distributed
settings and mitigates issues such as soft label drift and non-
convergent knowledge caused by insufficient rounds.

After 50 rounds, the improvement in Representation
Stability Index (RSI) becomes more gradual but continues to
increase. This pattern is closely related to the effect of the
Modular Structure Injection (MSI) mechanism. Through
repeated perturbation and feedback, the model gradually learns
stable expression patterns under local structural variation. As a
result, it builds a more robust representation space. It is
important to note that in the early rounds, RSI shows weaker
performance due to insufficient propagation of perturbation
signals. As the training continues, the stabilizing effect of MSI
becomes more evident.

In terms of generalization, the GuS metric improves at a
slower pace compared to other indicators. After 50 rounds, its
growth curve becomes even flatter. This suggests a boundary
effect in improving out-of-distribution generalization. The
trend is linked to the complexity of cross-task semantic
reconstruction in task-incremental learning. Although DDG
and MSI jointly provide a stable semantic transition
mechanism, high-frequency task shifts and context
reconstruction still require more training time for semantic
absorption and representation rebuilding. While extended
training improves the depth of semantic fusion, further
breakthroughs in generalization depend on a fine balance
between structural regulation and target alignment.

The Parameter Efficiency (PE) metric shows a steady
decline as the number of federated rounds increases. This
reflects the collaborative optimization between the module
injection mechanism and the distillation process. As the
distillation path becomes more stable and the structural
perturbation patterns converge, the amount of model updates



required per round gradually decreases. This reduces the
overall parameter update load. The result further confirms the
resource-aware nature of the proposed method in the
distributed fine-tuning of large language models. It maintains
lightweight update requirements even as task complexity
increases, demonstrating the advantage of the joint design of
structural regularization and soft guidance.

4) The impact of local perturbation range on cross-task
representation consistency

This paper also analyzes the impact of local perturbation
range on cross-task representation consistency. The
experimental results are shown in Figure 5.

Figure 5. The impact of local perturbation range on cross-task
representation consistency

As shown in Figure 5, the overall trend shows that the
variation in local perturbation range has a significant impact on
the model's cross-task representation ability. Semantic
Retention Score (SRS) performs best under medium-strength
perturbations. This suggests that moderate perturbation enables
the model to learn stable structural behaviors of modules more
effectively. As a result, it develops internal representations that
are invariant across tasks. When the perturbation range is too
small, the injected signals are insufficient to activate robustness
learning. When it is too large, critical semantic pathways may
be disrupted, leading to distorted representations. This
nonlinear trend indicates that the effectiveness of structural
injection in enhancing semantic retention depends strongly on
the proper calibration of the perturbation range.

Task Transfer Accuracy (TTA) shows a steady upward
trend. This suggests that as the perturbation range expands, the
model gradually builds stronger context reconstruction and
feature adaptation capabilities. With the help of the DDG
mechanism, client models continuously receive distillation
guidance from perturbed representations. This gradually
enhances their responsiveness to changes in task structures.
The results show that structural perturbation not only enriches
local representational diversity but also promotes consistent
global semantic transfer through soft knowledge pathways.
This allows the model to maintain high transfer accuracy
during task switching.

Representation Stability Index (RSI) also exhibits a
continuous increase. This reflects the stronger reinforcement

effect of structural injection at higher levels of perturbation.
Through multiple training rounds, the model adapts to the
internal activation changes caused by perturbation. This leads
to the development of stable response mechanisms against
structural variation in the feature space. The increased stability
reduces fluctuations in module behavior and provides a more
controllable structural path for downstream tasks. This reflects
the MSI module's capacity to generate long-term memory in
distributed semantic modeling. In contrast, Generalization
under Shift (GuS) shows slight fluctuations in high perturbation
regions. This suggests that the model remains sensitive to out-
of-distribution semantics under intense structural changes,
highlighting the boundary of regularization control.

The steady decline in Parameter Efficiency (PE) further
confirms the influence of perturbation range control on model
lightweighting. As the perturbation range increases, the model
tends to focus on expressing stable regions, reducing
dependence on redundant structures. This low-update, high-
expression mechanism aligns closely with the proposed module
injection strategy. It shows that structure path optimization,
activated by limited perturbation, can improve cross-task
consistency while significantly reducing parameter
consumption during fine-tuning. These findings provide
empirical support for building structurally efficient and
semantically robust fine-tuning paradigms for large language
models.

5. Conclusion
This study proposes an efficient fine-tuning framework for

large language models in distributed environments. The
framework integrates Differentiated Distillation Guidance
(DDG) and Modular Structure Injection (MSI). It addresses key
challenges in federated learning, including non-independent
and identically distributed data, model heterogeneity, and
structural perturbation. By combining semantic alignment and
structural robustness modeling, the method significantly
improves performance across multiple dimensions, including
semantic retention, representation stability, and task
generalization. Extensive evaluations in complex task settings
demonstrate strong cross-client transfer ability and parameter
efficiency. These results provide both theoretical and practical
foundations for building secure and efficient distributed
language intelligence systems.

From the perspective of method design, the DDG
mechanism enables dynamic alignment between global
semantic pathways and local update processes. This alleviates
problems of objective degradation and weak guidance that
often occur in traditional federated distillation under complex
semantic tasks. At the same time, the MSI strategy introduces
structural perturbations into local functional sub-modules. This
guides the model to form robust expression pathways,
enhancing representation stability under task increment and
structural drift. The two mechanisms work together to improve
adaptability to dynamic semantic variation. They also maintain
a high performance-to-efficiency ratio under resource-
constrained training, showing strong scalability and
deployment potential.



For experimental validation, the study conducts a
comprehensive set of main experiments, ablation analyses, and
hyperparameter sensitivity evaluations. These results
systematically demonstrate the effectiveness and robustness of
the proposed mechanisms under various challenging task
settings. The method achieves consistent improvements in
semantic transfer, cross-task representation reconstruction, and
distribution generalization, all while maintaining low fine-
tuning cost. The strong performance in parameter efficiency
and task adaptability provides a feasible solution for deploying
large language models across multi-client and multi-scenario
environments. This capability is directly applicable to edge
intelligence, personalized semantic modeling, and multilingual
human-computer interaction.

6. Future research
Future research can further explore module scheduling

strategies under complex communication constraints and
heterogeneous device environments. This would enhance
resource adaptability and deployment flexibility in federated
fine-tuning. As large language models are increasingly
deployed on edge and terminal devices, it is essential for
models to dynamically adjust module participation and update
frequency based on device capabilities and communication
loads. Investigating scheduling mechanisms such as
computation priority among modules, gradient synchronization
strategies, and communication compression techniques will
provide crucial support for improving the efficiency of
federated fine-tuning in real-world systems. In addition,
integrating higher-level semantic decomposition into the model
structure is a promising direction. By explicitly modeling
hierarchical dependencies among semantic units, it is possible
to factorize semantic tasks and enhance structural
interpretability, improving the controllability and transparency
of the model in task generalization and error diagnosis.

Building on this foundation, the proposed federated
framework can also be extended to multimodal collaborative
processing. It can support semantic alignment and interaction
across heterogeneous modalities such as speech, image, and
text, offering a general solution for distributed optimization in
multimodal intelligent systems. The framework can also be
applied to privacy-preserving content generation and
autonomous task migration. It enables the development of
agent models with joint training and generation capabilities and
multi-task switching. Furthermore, integrating the proposed
federated module mechanisms with mainstream parameter-
efficient fine-tuning techniques such as Adapter, LoRA, and
Prompt may enable continuous learning and personalized
control for large models. This would support the development
of scalable semantic systems with lifelong learning and
controllable evolution. Advancing this line of research will
provide a strong theoretical and engineering foundation for
deploying general-purpose AI systems in industrial-scale
applications. Overall, the modular federated fine-tuning method
proposed in this study offers not only generalizable theoretical
contributions but also strong system-level adaptability and
practical impact in real-world semantic intelligence
deployments.
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