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Abstract: This paper addresses the problems of semantic inconsistency, cross-modal alignment difficulty, and low efficiency in
standardized mapping during the ETL (Extract-Transform-Load) process of multi-source heterogencous medical data, and
proposes a deep learning-based method for multimodal fusion and unified semantic embedding modeling. The method extracts
features from different modalities through a structured feature encoder, a text encoder, and a categorical encoder, and constructs a
shared semantic embedding space using a cross-modal attention mechanism to achieve efficient alignment and semantic
consistency modeling between structured data, unstructured text, and coded information. In the mapping prediction stage, the
model integrates attention-enhanced semantic matching with a confidence calibration mechanism, effectively improving the
ability to identify complex field relationships and mapping accuracy. The experimental design covers multi-dimensional
evaluations, including hyperparameter sensitivity, environmental sensitivity, and data sensitivity, verifying the stability and
robustness of the method under various settings. Comparative results with representative baseline models show that the method
achieves the best performance in key metrics such as ACC, AUC, and F1-Score, and demonstrates significant advantages in
handling medical data with high missing rates and cross-coding systems. The findings confirm that the proposed method can
reduce reliance on manual rules and mapping maintenance costs while improving medical data integration and interoperability,
providing a solid technical foundation for high-quality medical data analysis and applications.
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1. Introduction and maintain. Second, the semantic complexity and ambiguity

) ] ) of medical data mean that simple field alignment or rule
~ The value of medical data in modern healthcare systems is  matching often fail to capture deep clinical meaning. These
increasing, becoming a fundamental driver for clinical decision problems are further compounded by the coexistence of
support, disease prediction and prevention, public health  jnternational standards such as HL7, FHIR, LOINC, and
management, and precision medicine. However, medical data ~ NOMED CT with local coding systems. This leads to low
are often scattered across different hospital information  efficiency and insufficient accuracy in the mapping process,

systems, picture grchiving and communication systems, and even risks semantic misunderstanding and clinical errors[3].
laboratory information management systems, wearable device ) )
platforms, and various third-party medical applications. These Recent advances in deep learning for natural language

data vary widely in terms of structure, storage formats, and ~ processing, graph-based  modeling, and  cross-modal
coding schemes, and also suffer from inconsistent language use information fusion offer new opportunities to address semantic
and ambiguous field semantics[1]. Traditional medical data ~ mapping challenges in medical ETL. Unlike rule-based
exchange and integration rely on manually created rules and ~ methods, deep learning can automatically capture potential
standardized mapping tables. While these methods once  semantic relationships between fields through end-to-end
supported data interoperability, they are now inadequate for feature learning. It can process unstructured or semi-structured
large-scale, multi-source, heterogeneous medical data, as they ~ data and adapt to dynamic changes across data sources and
cannot meet requirements for timeliness, accuracy, and  coding systems. In medical data contexts, this allows deep
scalability. This fragmentation limits cross-institutional data  neural networks to create unified embeddings for diverse data
sharing and hinders the large-scale application of artificial ~ types such as medical terminology, examination reports, and
intelligence in healthcare[2]. imaging labels. This enables a shift from surface-level format

) conversion to deep semantic matching. Such methods can
Extract-Transform-Load (ETL) technology is the core  requce manual configuration efforts, maintain strong

process for integrating medical data. It extracts data from  generalization in heterogeneous environments, and support the

different source systems, transforms their formats and  {evelopment of sustainable medical data integration platforms.
semantics, and loads the cleaned data into a unified data

warechouse to achieve standardization and centralized ~In the context of accelerating global healthcare
management. In the medical domain, traditional ETL faces two  digitalization, high-quality medical data integration capabilities
key challenges. First, mapping rules depend heavily on the have become essential for building intelligent healthcare
expertise of domain specialists, making them costly to create  Systems[4]. Accurate ETL data mapping and semantic



matching ensure interoperability across institutions and
platforms, providing reliable data foundations for regional
health information platforms, national health databases, and
international medical cooperation. They also directly affect the
performance and safety of downstream applications, including
the recommendation accuracy of clinical decision support
systems, the generalization ability of disease risk prediction
models, and the responsiveness and reliability of public health
monitoring systems. As medical Al becomes increasingly
embedded in core clinical processes, ensuring semantic
consistency and data integrity is not only a technical matter but
also a key factor for patient safety, care quality, and the
efficient allocation of medical resources.

Therefore, deep learning-based medical ETL data mapping
and semantic matching methods hold significant theoretical and
practical value. Theoretically, they promote the integration of
medical informatics and artificial intelligence, providing a
scalable paradigm for unified modeling of heterogeneous
medical data. Practically, they can improve processing
efficiency and accuracy, reduce human dependency and
maintenance costs in data standardization, and create
conditions for an open, interconnected, and secure medical data
ecosystem. As medical data continues to grow in scale and
complexity, research in this area can drive advances in
intelligent healthcare and health informatics, and provide
strong support for higher-quality medical services and public
health governance.

2. Related work

The development of medical data integration and
transformation technologies has progressed from early manual
rule matching and static mapping tables to more recent
automated approaches based on statistical and machine
learning methods. In the traditional stage, ETL processes relied
heavily on domain experts to create mapping rules, manually
aligning fields and codes from different source systems to a
unified standard[5]. This approach has clear limitations when
dealing with highly heterogeneous and frequently changing
medical data. The creation and maintenance of mapping rules
is costly and difficult to adapt to dynamic changes in data
structures and semantics. When data sources undergo structural
adjustments or standards are updated, the system requires
substantial manual effort to revise the rules. In addition,
traditional methods have limited semantic understanding. They
can only handle simple field-level matches and cannot deeply
interpret the semantic content embedded in unstructured
information such as clinical records or imaging annotations.
These limitations have driven research toward more flexible,
automated, and intelligent mapping strategies[6].

With the rise of natural language processing, knowledge
graphs, and the semantic web, research on semantic mapping of
medical data has begun to incorporate standardized ontologies
and coding systems to improve interoperability and semantic
consistency. Ontology-based methods can use structured
semantic networks to reason over and normalize synonym and
hierarchical relationships across different data sources,
enabling more precise semantic alignment. Such methods show
good adaptability in environments where international
standards such as HL7, FHIR, LOINC, and SNOMED CT

coexist with local coding systems. However, they often require
the pre-construction and maintenance of large-scale domain
knowledge bases. They still face limitations in handling
emerging terms, ambiguous expressions, or cross-modal data,
with issues of insufficient knowledge coverage and restricted
reasoning efficiency. Moreover, purely ontology-driven
mapping strategies lack adaptability to dynamically changing
multi-source medical data, making it difficult to meet real-time
and scalability requirements[7].

The introduction of machine learning has brought
breakthroughs to medical data mapping. Early statistical
learning methods wused feature engineering and trained
classifiers to automatically predict field mapping relationships,
reducing the need for manual intervention. However, because
feature extraction depended on human expertise, these methods
often suffered from insufficient generalization in cross-
institution and cross-domain scenarios. In recent years, the
emergence of deep learning has significantly changed the
situation. End-to-end representation learning can automatically
extract multi-level and multi-granular semantic features from
raw data, while incorporating contextual information during
mapping to capture complex semantic relationships. In multi-
modal medical data environments, deep neural networks can
process structured data, text records, and imaging labels
simultaneously, enhancing the robustness and flexibility of
ETL processes. These methods not only improve mapping
accuracy but also significantly strengthen the system's ability to
adapt to unknown data sources.

In semantic matching, the combination of deep learning
with graph-based modeling, attention mechanisms, and pre-
trained language models has further advanced the intelligence
of medical data integration. Graph neural networks can
leverage structural information to model semantic relationships
between data elements, enabling global semantic alignment
across fields and tables. Attention mechanisms can
dynamically allocate weights to highlight the most critical
information for semantic matching, achieving Dbetter
performance when processing long clinical narratives or
complex table structures. Pre-trained language models, with
their transfer learning capabilities on large-scale medical text,
also provide strong support for semantic mapping across
domains and languages. The convergence of these technologies
is driving medical ETL systems from simple structural
transformation tools toward intelligent data hubs capable of
understanding and reasoning over clinical semantics, laying a
solid foundation for the practical application of medical
artificial intelligence.

3. Proposed Approach

In this study, the ETL process for medical data is modeled
as a multi-stage deep learning framework, encompassing data
extraction, feature representation, semantic alignment, and
mapping prediction. The model architecture is shown in Figure
1.
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Figure 1. Overall model architecture

First, assume that the original multi-source medical
dataset is:

N
D= {(xiayi:mi)}i=1
Where X, represents the structured or unstructured input,

Y, is the target field in the standardized label space, and m;,

is metadata (such as the encoding system and source
information). During the data extraction phase, the system
performs preliminary parsing and standardization on the fields
from different sources, converting them into a unified

embedding input sequence E € R, where T is the time
or field sequence length, and d is the feature dimension.

To achieve semantic representation of cross-source data,
this paper introduces a multi-channel encoder to map structured
numerical features, text features, and categorical features into a

shared vector space. Let the structured feature matrix be X
and the text feature sequence be X, . The encoding process

can be expressed as:
Hs = .fs(Xs;Qs)’Ht = f;(Xt’Qt)
Where fs and ft are encoding functions of numerical

and text respectively, and QS,Q is its parameter. Then,

through the feature fusion function:
H =Concat(H ,H,)-W,
Multimodal information is uniformly mapped to the

semantic space, and W, is a learnable mapping matrix.

In the semantic matching phase, the attention mechanism
is used to capture the fine-grained association between fields

and standardized labels. Given a field representation hi and a

candidate label representation ¢ i the attention weight is

calculated:

exp(h/ W,c;)
a, =
T exp(hWe,)

Where W, is a trainable parameter matrix. The context-

enhanced representation is obtained by weighted summation:
hi=2 ac,
J

This representation can effectively capture the implicit
semantic mapping relationship between source fields and target
labels, and enhance the semantic consistency modeling
capability of the model.

Finally, the semantic matching results are mapped to
labels through the classification prediction layer, and the
prediction probability is:

p(,| x,) = Softmax(W, h, +b,)

Where W, and bo are the output layer parameters. To

optimize model training, the cross-entropy loss function is
introduced:
1 N C
L= —NZ > Iy, =c)log p(y, =c| x,)

This optimization goal can achieve high-precision ETL
data mapping and semantic matching under the conditions of
multi-source and multi-modal medical data, while having good
scalability and generalization capabilities.

i=l c=1

4. Performance Evaluation

4.1 Dataset

This study uses the MIMIC-III (Medical Information
Mart for Intensive Care III) dataset as the primary source of
experimental data. The dataset was collected from the
intensive care unit information system of a large medical
institution and covers detailed medical records of more than
40,000 patients across different intensive care units. The data
include demographic information, time-series vital signs,
laboratory test results, medication records, diagnostic and
procedure codes, and unstructured clinical notes. The dataset
has been rigorously de-identified to ensure privacy compliance,
while preserving the completeness and diversity of the medical
records. It provides a rich set of real-world samples for
medical data modeling and analysis.

The MIMIC-III dataset has a complex structure that
contains both structured data, such as laboratory indicators,
medication records, and ICD codes, and unstructured data,
such as clinical narratives and imaging reports. These data
span multiple time dimensions and cover the entire
hospitalization process. They can support a wide range of
tasks, including time-series modeling, natural language
processing, and multi-modal data fusion. In the ETL data
mapping and semantic matching scenario of this study, the
dataset can simulate a realistic multi-source heterogeneous



medical data environment and test the model's performance
under different data types and semantic standards.

In addition, the size and dimensionality of the dataset are
sufficient to support the training and evaluation of deep
learning models. Its diverse data modalities provide a strong
foundation for building a unified semantic embedding space,
and its rich labels and standardized coding systems help verify
the accuracy and generalization of semantic matching.
Research conducted on this dataset can effectively assess the
potential application value of the proposed method in clinical
data integration and interoperability tasks.

4.2 Experimental Results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Tablel: Comparative experimental results

Model ACC AUC F1-Score
AutoMap[8] 0.872 0.901 0.854
Hi-BEHRT[9] 0.884 0913 0.866
Med-BERT][10] 0.889 0.921 0.871
BioBERT][11] 0.893 0.926 0.876
Clinical BERT[12] 0.898 0.931 0.881
Ours 0.912 0.948 0.896

Overall, the proposed method outperforms the comparison
models in ACC, AUC, and F1-Score, with an AUC of 0.948,
indicating stronger discriminative power in distinguishing
positive and negative samples. This advantage demonstrates
that the developed deep learning framework for medical ETL
data mapping and semantic matching can more effectively
capture semantic relationships in multi-source medical data,
thereby improving the accuracy of mapping prediction.
Compared with traditional pretrained model-based medical text
processing approaches, the proposed multimodal feature fusion
and semantic embedding space construction strategy
significantly enhances the completeness and discriminative

capacity of feature representations.
ACC vs Hidden Dimension & Layers

AUC vs Hidden Dimension & Layers

Across different models, it can be observed that
performance metrics improve steadily as the ability to model
domain-specific semantic features in the medical field
increases. For example, BioBERT and ClinicalBERT perform
better on medical corpora than general pretrained models,
highlighting the importance of domain adaptation. However,
these models still focus mainly on the text modality, with
limited use of structured numerical data and coded categorical
information. This results in insufficient performance in cross-
modal semantic alignment.

The proposed method retains the advantage of medical text
semantic understanding while introducing a structured feature
encoder, a categorical feature encoder, and a cross-modal
attention mechanism. This allows numerical features, coded
features, and text features to be mapped into a unified semantic
embedding space, enabling information complementarity and
fusion. This design fully leverages multi-source heterogeneous
information in the data mapping task, improving the modeling
of complex semantic relationships. As a result, the method
achieves a 1.5 percentage point improvement in F1-Score
compared with ClinicalBERT, confirming the effectiveness of
multimodal fusion in semantic matching tasks.

In addition, the results show that the proposed framework
demonstrates strong generalization capability. When dealing
with medical data from different institutions and standards, the
unified embedding space and dynamic attention matching
mechanism can better adapt to variations in data sources,
reducing performance degradation caused by semantic shifts.
This characteristic is highly significant for data integration and
interoperability in real-world medical scenarios. It can not only
improve mapping accuracy but also provide a more reliable
data foundation for subsequent clinical decision support and
intelligent analysis.

This paper first presents the experimental results on the
sensitivity of the encoder hidden dimension to the number of
layers, as shown in Figure 2.

F1-Score vs Hidden Dimension & Layers
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Figure 2. Experimental results on the sensitivity of the encoder hidden dimension and number of layers

From the trend of ACC, it can be observed that increasing
the encoder's hidden dimension and the number of layers
significantly improves classification accuracy in the medical
ETL data mapping and semantic matching task. When the
hidden dimension increases from 64 to 512, ACC shows a

stable rise across all layer settings, with the best performance
achieved at eight layers. This indicates that higher feature
representation capacity helps capture the complex semantic
characteristics of multi-source heterogeneous medical data,
thus improving mapping prediction accuracy.



The AUC results further confirm the trend of enhanced
discriminative ability. For all hidden dimension configurations,
increasing the number of layers leads to a notable improvement
in AUC, especially in high-dimensional embedding spaces
where this advantage becomes more evident. This suggests that
the proposed unified semantic embedding space and cross-
modal matching mechanism can provide better positive and
negative sample separation in multi-label mapping scenarios,
reducing the probability of incorrect matches and contributing
to improved medical data interoperability.

The performance of F1-Score reflects the model's ability to
balance precision and recall. As both the hidden dimension and
the number of layers increase, F1-Score improves steadily, with
particularly large gains at 256 and 512 dimensions. This
demonstrates that the multimodal matching strategy, which
integrates structured, textual, and coded features, not only
enhances precision but also improves the recognition of
boundary samples, maintaining consistent semantic mapping
across different data sources.

Considering the trends of all three metrics, the proposed
framework achieves optimal performance at higher hidden
dimensions and deeper network structures. However, this
improvement is gradual and not unlimited. This finding
suggests that, in practical deployment, it is necessary to balance
computational cost and performance gains. Selecting an
appropriate hidden dimension and number of layers can ensure
model accuracy and generalization while meeting the resource
and response time constraints of medical data processing
environments.

This paper also presents an experiment on the sensitivity of
attention head number, and the experimental results are shown
in Figure 3.
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Figure 3. Attention head number sensitivity experiment

From the ACC curve, it can be seen that as the number of
attention heads increases, the classification accuracy in the
medical ETL data mapping and semantic matching task rises
and reaches its peak at 12 attention heads. A larger number of
attention heads enhances the model's ability to capture multi-
source medical data features within the unified semantic
embedding space. It allows more detailed modeling of the
correlations between structured features and textual features,
thereby improving the accuracy of mapping predictions.

The AUC curve remains consistently higher than the ACC
curve and stabilizes between 8 and 12 attention heads. This
indicates that introducing multi-head attention significantly
improves the ability to distinguish between positive and
negative samples. However, when the number of heads exceeds
a certain range, the performance gain becomes limited. This
saturation trend suggests that too many attention heads may
lead to redundancy in feature representation, which increases
computational ~ complexity = without  bringing notable
improvements in discriminative capability.

The trend of F1-Score is generally consistent with that of
ACC, reflecting a gradual optimization of the balance between
precision and recall as the number of attention heads increases.
At 12 attention heads, the F1-Score reaches its highest value.
This shows that the multi-head attention mechanism, when
capturing fine-grained relationships between different
modalities, not only improves accuracy but also enhances recall
for boundary samples, thus improving the overall mapping
quality.

In summary, appropriately increasing the number of
attention heads can improve model performance in the
semantic matching of multi-source heterogeneous medical data.
However, beyond the optimal range, the benefits diminish.
Therefore, in practical deployment, the number of attention
heads should be selected according to data scale and
computational resources, ensuring performance while
controlling computational cost. This conclusion provides
valuable guidance for future model hyperparameter
optimization and deployment strategies.

This paper further gives the experimental results of
different sampling rate settings, and the experimental results
are shown in Figure 4.
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Figure 4. Experimental results of different sampling rate
settings

From the ACC curve, it can be observed that increasing the
sampling rate significantly improves classification accuracy in
the medical ETL data mapping and semantic matching task.
When the sampling rate increases from 10% to 50%, ACC
shows a clear rise, indicating that a larger proportion of data
samples provides the model with more comprehensive
semantic context and feature distribution information, thereby



improving prediction accuracy. When the sampling rate
exceeds 75%, the growth of ACC becomes more gradual,
suggesting that the model can already capture the key features
when approaching the full dataset.

The AUC trend shows that this metric remains at a high
level for all sampling rates and increases steadily as the
sampling rate rises. This means that more data samples not
only improve the overall discriminative ability but also enhance
the model's capability to distinguish boundary samples. When
the sampling rate reaches 50% or higher, AUC approaches
saturation, indicating that the model's separation of positive and
negative samples is close to optimal. This is crucial for
reducing mismatches in medical data semantic mapping.

The F1-Score results are generally consistent with ACC. At
lower sampling rates, the score is relatively low but improves
gradually as the sampling rate increases. This reflects an
enhanced ability of the model to balance precision and recall.
The trend shows that higher sampling rates not only improve
the model's ability to identify correct matches but also enhance
recall for low-frequency or rare semantic relationships, thereby
improving the overall mapping quality.

In summary, moderately increasing the sampling rate can
significantly improve model performance in the semantic
matching of multi-source heterogeneous medical data.
However, beyond a certain threshold, the marginal benefit of
performance improvement decreases. Therefore, in practical
deployment, the sampling rate should be selected based on data
availability and computational resources to achieve a balance
between performance and efficiency, ensuring high accuracy
and robustness while avoiding unnecessary computational cost.

This paper also gives the experimental results on the impact
of data missing rate, and the experimental results are shown in
Figure 5.
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Figure 5. Experiment on the impact of the data missing rate

From the ACC trend, it can be seen that classification
accuracy in the medical ETL data mapping and semantic
matching task decreases significantly as the data missing rate
increases. When the missing rate rises from 0% to 50%, ACC
drops sharply, indicating that missing data greatly weakens the
model's ability to capture complete semantic information. This
effect is particularly evident in the multimodal information
fusion stage, where missing features lead to incomplete
representations in the embedding space, thus reducing the
accuracy of mapping predictions.

The AUC curve also shows a gradual decline as the missing
rate increases, but it remains at a relatively high level within
the low missing rate range of 0% to 20%. This suggests that,
within a certain range, the model's unified semantic embedding

and attention matching mechanism retain some fault tolerance,
allowing effective discrimination between positive and
negative samples even with partial information loss. However,
when the missing rate exceeds 30%, the decline in AUC
accelerates, reflecting a severe weakening of cross-modal
semantic alignment capability due to insufficient feature
information.

The F1-Score trend further reveals the model's sensitivity to
the balance between precision and recall. As the missing rate
increases, F1-Score continues to decrease, indicating that under
high missing rate conditions, the model not only fails to detect
more correct matches but also increases the proportion of
incorrect matches. This phenomenon is particularly pronounced
in rare semantic relationships or low-frequency feature matches,
as these types of information are more likely to be lost in high-
missing-rate environments, leading to reduced mapping
consistency.

Overall, the data missing rate has a significant impact on
the performance of medical ETL data mapping and semantic
matching models, especially when it exceeds a certain
threshold, after which the performance degradation accelerates.
Therefore, in practical applications, it is essential to minimize
the missing rate and adopt strategies such as missing value
imputation, feature recovery, and robustness enhancement.
These measures can improve the model's adaptability in
incomplete data scenarios and are critical for ensuring the
stability and accuracy of cross-institution and multi-source
heterogeneous medical data integration.

5. Conclusion

This study addresses the problem of ETL data mapping and
semantic matching in medical data and proposes a deep
learning-based method for multimodal fusion and unified
semantic embedding modeling. The method effectively tackles
key challenges in cross-modal alignment, semantic consistency,
and standardized mapping for multi-source heterogeneous
medical data. By introducing a structured feature encoder, a
text encoder, and a categorical encoder, and combining them
with a cross-modal attention mechanism and a shared
embedding space, the model achieves efficient feature
complementarity and deep semantic relationship modeling
across different data types and sources. Extensive experiments
show that the method outperforms several representative
models on multiple performance metrics, demonstrating its
effectiveness and superiority in complex medical data
integration tasks.

At the application level, this research provides an important
technical foundation for interoperability in medical information
systems, cross-institutional data sharing, and clinical decision
support. Accurate semantic mapping can reduce human
involvement and maintenance costs in the medical data
standardization process and significantly improve the
automation of data exchange and analysis. This, in turn,
enhances the efficiency of using medical big data in clinical
decision support, public health monitoring, and medical
research. In addition, the robustness of the proposed method in
multimodal feature fusion offers a feasible solution to the
challenges of missing values, noise, and coding discrepancies



in real medical environments, contributing to the rapid
development of smart healthcare and digital health.

The outcomes of this study are significant not only in the
medical domain but also in other fields that involve multi-
source heterogeneous data processing, such as financial risk
control, industrial quality inspection, and public security
monitoring. This general framework, based on deep semantic
embedding and cross-modal alignment, provides theoretical
and methodological insights for data fusion and semantic
consistency modeling across domains. In cross-industry
applications, the method has the potential to offer higher
accuracy and scalability for data interoperability and intelligent
analysis in complex business scenarios, thus promoting the
upgrade of data-driven decision-making models.

Future research will focus on improving the scalability and
cross-domain generalization capability of the model. One
direction is to explore lightweight neural network architectures
and adaptive inference mechanisms to meet the requirements of
efficient deployment in resource-constrained environments.
Another direction is to investigate training methods within
secure frameworks such as federated learning and privacy-
preserving computation, enabling collaborative modeling
across institutions without exposing sensitive information.
Furthermore, integrating knowledge graph reasoning and
generative modeling techniques can enhance the model's
capabilities in complex semantic inference and data
augmentation, advancing medical data integration and analysis
toward greater intelligence and autonomy.
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