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Abstract: This study addresses key challenges in multimodal knowledge graph construction, including difficulties in semantic
alignment, insufficient modality fusion, and limited entity-relation extraction capability. It proposes a multimodal graph
construction and relation extraction algorithm that incorporates a contrastive learning mechanism. During the feature encoding
stage, the method performs independent representation learning for modalities such as text and images. A shared semantic space is
then constructed through linear mapping. In the semantic alignment stage, the model introduces a contrastive learning objective.
By constructing positive and negative sample pairs, it enhances the consistency of representations across different modalities. This
improves both the aggregation and discrimination of entity semantics. For structural modeling, the algorithm integrates a graph-
structure-aware mechanism. It leverages contextual information from adjacent entities to enhance the structural completeness of
entity representations. A relation classification module based on entity pairs is built to complete high-quality triple extraction. To
validate the effectiveness of the method, a series of sensitivity experiments are conducted. These cover variations in
hyperparameters, data scale, and input noise. The evaluation focuses on entity recognition accuracy, relation prediction
performance, and the stability of semantic alignment. Experimental results show that the proposed method achieves strong
performance across multiple evaluation metrics. It demonstrates good robustness and generalization, and effectively improves the
construction quality and structural expressiveness of multimodal knowledge graphs.
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1. Introduction
With the continuous advancement of artificial intelligence,

knowledge graphs have emerged as a fundamental technology
for supporting understanding and reasoning in intelligent
applications. They are increasingly viewed as a key foundation
for building human-like intelligent systems[1]. In practical
scenarios, knowledge graphs have been widely applied in
search engines, recommendation systems, and question-
answering platforms, and have shown great potential in
domains such as finance, healthcare, and education. However,
traditional knowledge graph construction methods mostly rely
on single-modal data sources, which are insufficient for fully
representing the diverse and complex information structures in
the real world. As multimodal integration becomes a
mainstream trend in information processing, how to effectively
exploit semantic associations in heterogeneous modalities —
such as text, images, and audio—has become a critical research
focus. This is essential to improve the quality of knowledge
graph construction and the expressiveness of relations[2].

The integration of multimodal data into graph construction
faces challenges such as heterogeneous data sources and
significant differences in expression formats. These are often
accompanied by issues like imprecise semantic alignment and
noise interference across modalities. In this context, traditional
shallow alignment or static feature concatenation methods
struggle to achieve deep semantic coordination between
modalities. This leads to sparse graph structures, incomplete
entity relationships, and limited reasoning capabilities.

Particularly when dealing with large volumes of semi-
structured or unstructured data, existing methods cannot
effectively establish semantic mappings across modalities. This
significantly limits the accuracy and completeness of
multimodal knowledge graphs in real-world applications.
Therefore, developing a multimodal graph construction method
with strong representational power and cross-modal semantic
alignment is of great theoretical and practical significance. It
also promotes the shift of knowledge graphs from static
representations to dynamic perception and reasoning[3].

On the other hand, contrastive learning has demonstrated
strong capabilities in unsupervised feature alignment and
similarity modeling. It has achieved notable success in the field
of representation learning. Introducing contrastive learning into
multimodal knowledge graph construction can enhance the
aggregation of semantically consistent information across
different modalities[4]. By constructing positive and negative
sample pairs, the model is driven to automatically learn a
shared semantic space across modalities. This helps mitigate
feature shift and alignment errors. Compared to traditional
supervised learning, contrastive learning is better at discovering
structural information from large-scale unlabeled data. It also
offers better transferability and robustness. In the context of
multimodal knowledge graphs, contrastive learning can
improve the distinctiveness and discriminability of entity
representations. It also enhances the semantic consistency of
entity relations, thereby improving the structural integrity and
reasoning capabilities of the graph.



In real-world applications, knowledge graphs often face
problems such as entity ambiguity, sparse relationships, and
contextual inconsistency. These issues become even more
prominent in multimodal environments. Traditional methods
for entity recognition and relation extraction mainly rely on
textual context. They make limited use of other modalities such
as images, tables, and diagrams, which restricts overall
extraction performance. Multimodal fusion approaches can
effectively leverage complementary features provided by
different sources. This improves the accuracy and
completeness of entity recognition and relation modeling.
Additionally, under a multimodal setting, semantic guidance
mechanisms and contrastive optimization strategies can be
introduced to better characterize complex entity relations. This
helps build knowledge graph frameworks with stronger
expressive power and reasoning capabilities, providing
essential support for advanced knowledge organization and
intelligent services.

In summary, developing a multimodal knowledge graph
construction and entity-relation mining algorithm with
integrated contrastive learning is a vital step toward addressing
the complexity of real-world information. It also plays a key
role in advancing knowledge graph technology from
"construction" to "understanding" and "reasoning." This
research direction helps overcome the limitations of current
single-modal extraction methods. It also provides theoretical
foundations and technical support for building more intelligent
and adaptive knowledge systems. As AI systems evolve toward
generalization, multimodal perception, and intelligent
reasoning, exploring more efficient, robust, and semantically
controlled mechanisms for graph construction and knowledge
mining holds significant prospective value and wide
application potential.

2. Relevant Literature
The construction of knowledge graphs and the extraction of

entity relations have long been central tasks in natural language
processing and knowledge engineering. Early research focused
on the extraction and organization of structured data.
Techniques such as information extraction, entity alignment,
and relation linking were used to construct knowledge graphs
from large-scale structured databases or semi-structured web
pages[5]. However, these methods often relied on rule-based
templates or manual annotations, which made them unsuitable
for real-world data with semantic ambiguity and complex
contexts. With the development of pre-trained language models,
researchers began incorporating deep learning methods into
knowledge graph construction. These approaches improved the
accuracy of entity recognition and relation extraction through
contextual semantic modeling, sequence labeling, and classifier
design. Nonetheless, most of these methods are limited to
single-modal inputs and cannot fully utilize the increasingly
rich non-textual information sources such as images and audio.

In the field of multimodal knowledge graph construction,
recent studies have explored the integration of heterogeneous
modalities such as vision, speech, and tabular data. These
methods attempt to achieve modality fusion through shared
embedding spaces, modality-specific projections, or joint
attention mechanisms[6]. The goal is to build more

comprehensive entity representations and relation expressions.
For example, some approaches jointly encode images and text
to enhance the perception of visual entities and events, thereby
complementing knowledge structures that cannot be covered by
text alone. Although these methods improve the richness of
knowledge graphs, they still face challenges in semantic
alignment and cross-modal information fusion. Issues such as
semantic drift, noise interference, and modality imbalance limit
further improvements in graph quality[7].

To address the problem of modality alignment, contrastive
learning has been introduced into multimodal tasks as an
effective paradigm for representation learning. It is used to
enhance semantic mapping and structural consistency across
different modalities. In knowledge graph construction, some
studies have attempted to build positive and negative sample
pairs. Using contrastive loss functions, these methods guide
models to learn modality-independent semantic representations,
thereby improving the discriminative power and consistency of
entity representations. The core idea is that similar entities
should be closer in the shared semantic space, while unrelated
entities should be farther apart. This improves the robustness of
structural modeling. In entity relation extraction, contrastive
learning is also used to improve relation classification and link
prediction. By modeling the similarity and difference between
entities, it enables more accurate relation recognition. However,
there is still a lack of unified modeling frameworks that support
systematic fusion of multimodal inputs. The full potential of
contrastive learning for cross-modal semantic alignment has
not yet been fully realized[8].

In addition, to further enhance the fine-grained modeling of
entities and relations in knowledge graphs, some studies have
focused on combining structural awareness with context
enhancement mechanisms. For instance, graph neural networks
have been used to model high-order dependencies between
entities. Attention mechanisms have also been employed to
identify key contextual features relevant to relation extraction.
These methods compensate for the limitations of shallow
encoders and improve the precision and semantic consistency
of graph construction. Nevertheless, under multimodal
conditions, there are still many challenges in coordinating
structural modeling and semantic fusion. Therefore, developing
a framework that integrates contrastive learning, supports
multimodal inputs, and incorporates context-aware
mechanisms holds promise for advancing the field both
theoretically and practically.

3. Method Overview
This study proposes a multimodal knowledge graph

construction and entity relationship mining algorithm that
integrates a contrastive learning mechanism to address the
challenges of semantic inconsistency and inadequate cross-
modal fusion. The overall method is composed of four core
stages that operate in a unified pipeline. First, in the
multimodal feature encoding stage, the model independently
encodes heterogeneous data modalities such as text and images,
generating rich semantic representations tailored to each
modality. These representations are then projected into a shared
latent space using modality-specific linear transformations. In
the second stage, semantic alignment modeling is performed



through a contrastive learning objective that encourages the
alignment of semantically similar entities across modalities by
maximizing agreement between positive pairs while pushing
apart negative pairs. This helps establish a consistent and
discriminative semantic space across different input sources.
The third stage focuses on structure enhancement and
expression, where a graph-based mechanism is introduced to
incorporate contextual structural information from adjacent

entities, strengthening the coherence and completeness of entity
embeddings within the graph topology. Finally, the relationship
extraction optimization stage constructs relation-aware
representations for entity pairs and performs fine-grained
relation classification to extract high-quality relational triples.
The model architecture, which illustrates the interaction and
flow between these four stages, is presented in Figure 1.

Figure 1. Overall model architecture diagram

At the input level, let the text modality be T and the image
modality be V, and obtain the corresponding embedding vector
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and visual encoder, respectively. Both are mapped to the shared
semantic space after unified linear projection, and the fused
representation Mh is obtained as follows:
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that controls the contribution weights of different modalities to
the final semantic representation.

In the semantic alignment stage, in order to improve the
semantic consistency of different modalities, a contrastive
learning mechanism is introduced to strengthen the
discrimination ability of the shared semantic space between
modalities by constructing positive and negative sample pairs.
Assume that ih and 
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Where )(sim represents the cosine similarity function
and  is the temperature coefficient, which is used to control
the sharpness of the distribution.

In terms of structural modeling, to enhance the contextual
dependencies between entities, a graph attention network is
introduced to perform graph-level aggregation on the initial
entity representation. Let )(iN represent the neighbor set of
an entity i , then the aggregation update formula is:

)(
)(

' 



iNj

jiji Whh 

Where ij is the attention weight, W is the
transformation matrix, and  is the nonlinear activation
function, which is used to generate the context-enhanced entity
representation '

ih .



In the process of relation extraction, an entity pair
representation vector ijr is constructed as the relation
classification input, where:

]||||||||[ ''''''
jijijiij hhhhhhr 

Here || represents vector concatenation and 
represents element-wise multiplication, which are used to
express the symmetric and asymmetric relationship
characteristics between entities.

Finally, cross-entropy loss is used for relationship type
prediction modeling, and the objective function is defined as
follows:
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Where ijy is the true relationship label corresponding to

the entity pair, and )|( ijijyP  represents the predicted
probability distribution. The overall loss function is a weighted
combination of the above contrast loss and the relationship
classification loss, which jointly optimizes the entity
representation and relationship prediction modules and
promotes the collaborative learning of multimodal semantic
alignment and structural modeling.

4. Experimental Dataset
The dataset used in this study for the multimodal

knowledge graph construction task is WebQA-Multimodal.
This dataset is designed specifically for open-domain
multimodal question answering and knowledge extraction. It
contains a large amount of aligned text and image information,
making it suitable for cross-modal entity recognition and
relation extraction. The dataset consists of structured question-
answer samples, webpage content snippets, and corresponding
images. It supports joint understanding and reasoning over
textual and visual content, effectively simulating the process of
knowledge acquisition in real-world heterogeneous
environments.

The textual portion of WebQA-Multimodal covers a variety
of web sources, including encyclopedias, Q&A forums, and
news articles. The language is natural and diverse, with strong
contextual dependencies. The image content is highly
consistent with the associated textual descriptions. This makes
the dataset suitable for tasks such as semantic alignment,
modality fusion, and entity completion. Entities and relations in
the dataset have been manually annotated, forming complete
knowledge triples that can be directly used for knowledge
graph construction and evaluation.

In addition, the dataset is representative in terms of
modality coverage, semantic complexity, and structural
completeness. It is widely used for training and evaluating
models in multimodal representation learning, cross-modal
retrieval, and knowledge extraction. By leveraging WebQA-
Multimodal, this study is able to perform joint modeling of text
and image modalities within a unified framework. This

provides rich scenario support and reliable evaluation
references for the construction of multimodal knowledge
graphs.

5. Results and Analysis
In the experimental results section, the relevant results of

the comparative test are first given, and the experimental
results are shown in Table 1.

Table 1: Comparative experimental results

Method MRR Hits@1 Hits@10
MoSE[9] 0.421 0.312 0.582
MR-MKG[10] 0.439 0.328 0.601
OTKG[11] 0.456 0.341 0.618
TSAM[12] 0.472 0.359 0.635
Ours 0.488 0.374 0.816

The experimental results in the table show clear differences
in performance across different multimodal knowledge graph
construction and entity-relation extraction methods on the
MRR, Hits@1, and Hits@10 metrics. The overall trend reflects
recent progress in semantic alignment and cross-modal
reasoning capabilities. MoSE and MR-MKG, as earlier
multimodal fusion methods, perform worse across all three
metrics compared to later models. This indicates their
limitations in modeling semantic consistency across modalities,
especially in accurately identifying the top-ranked entity
(Hits@1).

OTKG and TSAM introduce structural awareness and
optimized objectives for multimodal alignment and modeling.
As a result, they achieve relatively better performance on all
three metrics. In particular, TSAM demonstrates notable
improvements on Hits@1 and Hits@10, suggesting its superior
ability to model complex entity relations and contextual
dependencies. This effectively mitigates issues such as entity
ambiguity and sparse relations. TSAM also shows stronger
cross-modal fusion and contextual understanding capabilities
compared to other methods.

The overall trend indicates that model performance
improves with deeper modality fusion and the introduction of
contrastive mechanisms. Shallow concatenation or simple
feature mapping alone is insufficient to capture the complex
semantic associations between modalities. The improvements
in MRR highlight enhanced global ranking capabilities, which
support more stable knowledge reasoning and relation
localization. These findings further confirm the key role of
contrastive learning in semantic alignment and feature
enhancement. It facilitates both the fusion and differentiation of
multimodal features within a shared space.

The proposed method outperforms existing models on all
three key metrics: MRR, Hits@1, and Hits@10. It shows a
particularly strong advantage on Hits@10, indicating higher
recall in multimodal entity-relation reasoning tasks. This
performance gain is attributed to the integration of semantic
alignment and structure-enhancement modules. These
components work together to improve semantic consistency,
contextual structure modeling, and reasoning path optimization



between entities. Overall, the results demonstrate that a
multimodal knowledge graph construction framework
enhanced by contrastive learning is an effective approach to
improving relation extraction and entity modeling.

This paper also gives the impact of different temperature
coefficients on contrastive learning performance, and the
experimental results are shown in Figure 2.

Figure 2. Effects of different temperature coefficients on contrastive learning performance

The experimental results in Figure 2 show that the
temperature coefficient has a significant impact on the
performance of contrastive learning in multimodal knowledge
graph construction. As the temperature increases from 0.01 to
0.1, the main model's MRR score continuously improves and
reaches its peak at T = 0.1. This suggests that this setting
achieves a better balance and separation between positive and
negative samples in similarity computation, thereby enhancing
the effectiveness of modality semantic alignment.

Auxiliary View 1 and Auxiliary View 2 also follow a
similar trend but show different levels of sensitivity. This
indicates that the model's response to temperature tuning varies
across views. At T = 0.01, Auxiliary 1 performs the worst and
fails to generate effective contrast, while Auxiliary 2 remains
more stable. This suggests that different semantic subspaces or
structural representations have varying tolerance to
hyperparameter settings. It also reflects the uneven
effectiveness of contrastive mechanisms across different graph
construction paths.

The results further reveal that a high temperature coefficient
(e.g., T = 0.5) leads to a noticeable drop in performance. This
may be due to reduced distance between positive and negative
samples, which weakens the separation and aggregation effects
of contrastive learning. As a result, the model's ability to
perceive structure and recognize entity relations is diminished.
This phenomenon implies that the model's discriminative
power relies on a properly calibrated contrastive strength. Both
overly strong and overly weak contrasts reduce the quality of
multimodal semantic space construction.

In summary, selecting an appropriate temperature
coefficient is critical for improving the discriminability of
entity representations and the accuracy of relation extraction in
multimodal knowledge graphs. Contrastive learning in this task
requires precise control of the loss function's balance. It also
demands dynamic adjustment of the contrastive strategy based

on modality characteristics and structural variations. These
results validate the importance of introducing a temperature
adjustment mechanism as a key parameter in contrastive
learning and provide practical guidance for model tuning and
generalization.

This paper also gives an interference analysis of the effect
of increasing noise ratio on cross-modal semantic alignment,
and the experimental results are shown in Figure 3.

Figure 3. Analysis of the effect of increasing noise ratio on
cross-modal semantic alignment

The experimental results in Figure 3 indicate that increasing
the noise ratio significantly disrupts cross-modal semantic
alignment performance, as shown by a continuous decline in
the Hits@1 metric. When the noise ratio is 0%, the model
accurately performs entity matching and relation recognition.
However, as the noise ratio increases to 30%, 40%, and 50%,
the Hits@1 score drops sharply. This suggests that the model
experiences growing interference during semantic alignment,



causing key semantic information to become diluted or
distorted.

This phenomenon reveals that in cross-modal knowledge
graph construction tasks, the model shows limited robustness
when facing input interference. Especially during multimodal
fusion, structured semantics and modality coordination are
highly sensitive to input quality. The introduction of noise may
disrupt the consistency of entity contexts and interfere with the
construction of positive and negative samples in contrastive
learning. This negatively impacts the clustering and separation
of entity representations in the semantic space, making it
difficult for the model to establish clear relational boundaries.

The figure also reflects a nonlinear degradation trend. At
low noise levels, the model retains some ability to adapt.
However, once a threshold is crossed, performance deteriorates
rapidly. This may be caused by cumulative feature drift,
disruption of structural information, and asymmetry in the
fusion of multimodal inputs. The trend has practical
implications. It suggests that greater attention must be given to
maintaining cross-modal consistency and suppressing
interference during data preprocessing, feature alignment, and
loss function design.

This paper also gives the impact of changes in the size of
the training set on the accuracy of entity recognition, and the
experimental results are shown in Figure 4.

Figure 4. The impact of changes in training set size on
entity recognition accuracy

Figure 4 illustrates the model’s Hits@10 performance on
the entity recognition task under different training set sizes.
The results show a steady upward trend overall. As the training
set expands from 10% to 100%, the model’s accuracy in entity
recognition improves noticeably. The growth is especially rapid
within the first 50%, indicating that in low-resource settings,
increased training data has a direct and significant positive
effect on model performance. This trend aligns closely with the
dependence on contextual modeling in multimodal knowledge
graph construction.

When the training set exceeds 60%, performance gains
begin to plateau. The slope of the Hits@10 curve decreases,
reflecting diminishing marginal returns in absorbing new
semantic information. This suggests that after the initial
learning phase, the model has captured the main structural and
semantic patterns. While further data expansion remains
beneficial, the improvement becomes limited. This may be due

to constraints in model capacity or saturation of the
representation space.

From a methodological perspective, the experiment also
demonstrates the adaptability of the semantic alignment model
under low-resource conditions. Even with only 30% to 40% of
the data, the model achieves a Hits@10 score close to 0.62.
This indicates that the introduced contrastive learning and
structure-aware mechanisms possess strong generalization
ability. They can effectively learn cross-modal entity mappings
and semantic relations from limited samples. This has
important implications for constructing multimodal knowledge
graphs in low-resource scenarios.

Overall, the results highlight the critical role of training data
size in entity recognition tasks. In multimodal environments,
data coverage directly affects the model's ability to perform
semantic fusion, locate entity boundaries, and maintain
relational consistency. The clear trend shown in the figure
supports the model's sensitivity to data quality. It also suggests
that future research should dynamically optimize model
parameters based on data availability to enable more robust and
adaptive knowledge graph construction.

6. Conclusion
This paper addresses key challenges in multimodal

knowledge graph construction and entity-relation extraction by
proposing a graph-building framework that integrates
contrastive learning. The method is based on unified
multimodal feature representations and incorporates both
semantic alignment mechanisms and structure-enhancement
models. It enables semantic fusion across multimodal data
while improving the discriminative power of entity
representations and the accuracy of relation prediction. By
constructing a shared semantic space and structure-aware paths,
the model establishes stable and consistent links between
entities from heterogeneous modalities, enhancing the
expressive power and reasoning robustness for complex
relation modeling.

Through multiple experimental settings, this study
systematically evaluates the model's performance under various
hyperparameter configurations, environmental disturbances,
and data scale changes. Results show that the proposed
algorithm demonstrates strong stability and generalization.
Guided by contrastive learning, the model effectively
distinguishes semantically similar but modally divergent entity
pairs. This significantly reduces common alignment errors and
representation sparsity in cross-modal graph construction. The
method integrates semantic expression, structural awareness,
and supervision signals into a cohesive optimization process,
offering a highly scalable and adaptable approach for
multimodal graph construction.

The proposed framework contributes both methodological
innovation and practical applicability. It has strong potential in
domains such as finance, healthcare, education, and intelligent
search, where knowledge representation and reasoning are
critical. The model provides a foundational structure for
perception and cognition, improving system understanding of
heterogeneous data. In particular, it demonstrates high
adaptability and efficiency in tasks with complex data sources,



diverse modality combinations, and high annotation costs. This
shows its potential to drive multimodal information fusion
systems toward high-quality intelligent reasoning.

Future research can explore more flexible modality
selection mechanisms and task-driven contrastive strategies.
These directions would help maintain semantic consistency and
relational accuracy under more complex or weakly supervised
conditions. Cross-domain transfer, incremental learning, and
knowledge evolution modeling also represent promising
avenues. These efforts aim to build more continuous and self-
growing multimodal graph systems, providing stronger
technical support for knowledge management and semantic
understanding in open environments.
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