
Journal of Computer Technology and Software

ISSN: 2998-2383

Vol. 3, No. 8, 2024

Deep Learning-Based Container Lifecycle Prediction in Cloud
Computing Environments
Heyao Liu
Northeastern University, Boston, USA
liuheyao.arya@gmail.com

Abstract: In cloud computing environments, containers serve as the core units for resource scheduling and service deployment.
Accurate prediction of their lifecycles is critical for improving system resource utilization and service stability. This paper
addresses the challenge of dynamic factors affecting container lifecycles and the limited modeling capacity of traditional methods.
It proposes a lifecycle prediction model based on deep regression networks. The proposed model takes multidimensional runtime
monitoring metrics and system state information as inputs. It employs a multi-layer nonlinear structure to extract temporal
features. An attention mechanism and embedding fusion module are integrated to enhance the modeling of key behavioral patterns.
During training, regularization strategies are applied to improve model generalization. Mean squared error is used as the
optimization objective to ensure stability and accuracy in continuous time prediction. To comprehensively evaluate the
effectiveness of the proposed method, a container-level lifecycle prediction dataset was constructed based on the Google Cluster
Trace. Experimental analysis was conducted from multiple perspectives, including hyperparameter sensitivity, system structure
complexity, and sampling strategies. The results show that the proposed model outperforms several mainstream baseline methods
in terms of MAE, RMSE, and R². It accurately reflects lifecycle trends and demonstrates strong adaptability and modeling
stability.

Keywords: Container lifecycle prediction, deep regression network, time series modeling, resource-aware scheduling

1. Introduction
With the widespread adoption of cloud computing and

containerization technologies, microservice architectures have
become increasingly important in modern distributed systems.
Containers, as ideal carriers for resource isolation, rapid
deployment, and elastic scaling, have demonstrated high
flexibility and controllability in practical applications[1].
However, managing the lifecycle of containers during runtime
still faces many challenges. Accurate prediction of container
lifecycles is increasingly critical, especially for resource
scheduling, anomaly detection, and performance optimization.
Understanding the dynamic evolution of containers from
creation to termination has become a key factor in ensuring
system stability and improving resource utilization[2].

Traditional container management strategies often rely on
static rules or manual configurations. These approaches are
difficult to adapt to the complex and changing resource loads in
multi-tenant environments. In real-world production scenarios,
container runtime durations are affected by multiple factors,
such as task type, service dependencies, request density, and
fluctuations in system load. The high variability of these factors
makes simple statistical prediction methods inadequate. As a
result, developing intelligent prediction models that can
automatically learn from historical behaviors and generalize
well has become a crucial research direction for improving
container lifecycle management.

In recent years, deep learning has achieved remarkable
progress in time-series modeling and behavior prediction tasks.

These advancements provide strong theoretical and practical
support for container lifecycle prediction. Deep regression
networks, in particular, have demonstrated strong expressive
power and modeling efficiency. Their ability to handle high-
dimensional, multi-source heterogeneous data and to learn end-
to-end representations makes them suitable for this task.
Applying deep regression networks to container lifecycle
prediction helps uncover hidden patterns in runtime data and
enables precise characterization of lifecycle durations and
fluctuations. This supports intelligent scheduling strategies and
proactive resource reservation[3].

Moreover, predicting container lifecycles is not only a
technical challenge but also directly related to resource
scheduling and service quality in cloud-native architectures.
From edge computing to hybrid cloud platforms, containers
exhibit diverse lifecycle patterns under different computing
environments. This variation places higher demands on the
generalization and robustness of prediction models. Building
lifecycle-aware prediction frameworks can help foresee
potential load changes and estimate container durations in
advance. This enhances system-level foresight, availability, and
elasticity[4].

Therefore, studying container lifecycle prediction based on
deep regression networks has both theoretical significance and
practical value. Such models promote a shift from experience-
driven to data-driven and intelligent decision-making in
container management. They improve platform responsiveness
and resource efficiency in complex operational scenarios. In
addition, the behavioral patterns identified by these models can

support anomaly detection, load balancing, and energy control.
This further strengthens the self-management capabilities and
sustainability of cloud infrastructures.

2. Related work
In the development of containerized infrastructures, the

management and prediction of container lifecycles have
gradually become key research areas in cloud computing. Early
work mainly focused on static resource allocation and rule-
based scheduling strategies[5]. These approaches relied on
predefined behavior templates or simple statistical models.
While they offered basic predictive capabilities in some
scenarios, their generalization was limited, and struggled in
dynamic production environments. As container deployments
expand and workload uncertainties increase, fixed rules, and
thresholds are no longer sufficient for elastic system
management and efficient scheduling. This has led to a
growing interest in more intelligent lifecycle modeling methods.

In recent years, machine learning methods have been
introduced into container performance modeling and lifecycle
prediction tasks[6]. These approaches use historical runtime
data to model container behaviors. Traditional algorithms such
as regression models, decision trees, and support vector
machines are commonly applied. They extract features from
historical metrics and fit regression models to predict future
container runtime or behavioral states. These methods have
improved accuracy to some extent. However, due to their
limited ability to represent high-dimensional features, they
often fail to capture complex nonlinear patterns and hidden
correlations among multi-source data. In large-scale concurrent
services or multi-tenant scenarios, these models often suffer
from stability issues.

With the rise of deep learning, an increasing number of
studies have applied neural network architectures to container
behavior modeling. Recurrent neural networks, convolutional
neural networks, and their variants have been used for time-
series representation learning[7]. These models can

automatically extract temporal features and multidimensional
dependencies from raw data. They show strong adaptability in
lifecycle prediction, performance degradation detection, and
anomaly detection tasks. To address service heterogeneity,
some works have introduced attention mechanisms and graph
neural networks. These techniques help model collaborative
behaviors and structured dependencies among services,
improving model generalization and multi-scenario adaptability.

Moreover, researchers have started to focus on model
interpretability and lightweight design during training and
deployment. Given the time sensitivity and computational
constraints in lifecycle prediction, some studies aim to design
compact yet expressive models. These models are often
supported by feature selection, multi-task learning, and
contrastive learning mechanisms. The goal is to enhance
training efficiency and generalization. At the same time, there
is a growing trend of integrating multi-source data, including
system logs, trace data, and monitoring metrics, into joint
modeling. This reflects the ongoing effort to balance prediction
accuracy, model stability, and deployment feasibility.

3. Architecture and Methodology
This study proposes a container lifecycle prediction

model based on a deep regression network, aiming to build an
end-to-end framework that can efficiently model container
runtime characteristics and accurately predict the length of its
lifecycle. The model takes container-level monitoring
indicators, system load information, and service context as
input, performs feature extraction and nonlinear mapping
through a multi-layer deep network structure, and finally
outputs a continuous numerical representation of the
remaining lifecycle of the container. In order to improve the
modeling ability of complex time dependencies, the model
introduces a multi-layer time series encoding module to
improve prediction accuracy by capturing short-term
fluctuations and long-term trends. The detailed structure of the
proposed model is illustrated in Figure 1.

Figure 1. Deep regression-based architecture for container lifecycle prediction
Assume that the input sequence is },...,,{ 21 TxxxX  ,

where each d
t Rx  represents a multidimensional feature

vector at time step t. First, the original input is encoded

through the temporal embedding layer to obtain the latent
space representation:

)(etet bxWRELUh 

Where dd
e RW  ' is the learnable projection matrix and

eb is the bias term. The representations of all time steps are
concatenated and fed into a multi-layer feedforward neural
network for deep feature extraction:

]),...,,([21 ThhhFFNz 
To enhance the model's ability to respond to different

dimensions in the input features, an attention mechanism is
introduced to integrate the information of key timing points,
which is expressed as follows:

 

 T

i i
T
t

T

t
hq

hq

1
)exp(

)exp(





T

t
tthc

1



Where q is the query vector, t represents the attention
weight at the tth time step, and c is the weighted global
context vector.

Finally, the lifetime prediction value is calculated through
a fully connected regression layer:

oo bcWy 

Where RbRW o
a

o   ,'1 is the output layer parameter.
The model is optimized using the mean square error loss
function:





N

i
ii yy

N
L

1

2)(1 

Where N is the number of samples, iy is the real life

cycle value, and iy


is the model prediction result. This
method achieves efficient learning of the container life cycle
through a full-process deep modeling mechanism and has
good scalability and adaptability.

4. Experimental Results
4.1 Dataset

The dataset used in this study is derived from the publicly
available Google Cluster Trace 2011. This dataset records
scheduling logs and resource usage information from a real
large-scale computing cluster. It captures the runtime
trajectories of thousands of containerized tasks in a production
environment. Key fields include task start and end times, CPU
and memory usage, scheduling decisions, and service
priorities. These features provide a rich and realistic data
foundation for modeling container lifecycles.

The dataset exhibits strong temporal properties and high
diversity. It reflects the dynamic characteristics of container
workloads in real cloud platforms. By labeling the lifecycle of
each container instance and extracting multidimensional
resource usage across its runtime, time-series inputs for

prediction can be constructed. This supports supervised
learning for lifecycle regression modeling. In addition, the
dataset covers a long time span and contains a large volume of
data, making it suitable for evaluating model robustness and
generalization in various scenarios.

During preprocessing, container tasks with complete
lifecycle records were selected. Features such as CPU usage,
memory usage, and scheduling counts were normalized. A
sliding window approach was used to construct time-series
samples. This ensures that each sample contains sufficient
contextual information while meeting the forward-looking
requirement of prediction. The final sample set was divided
into training, validation, and test sets, providing a solid
foundation for model training and performance evaluation.

4.2 Experimental setup

All experiments in this study were conducted on a local
high-performance server. The hardware environment included
two Intel Xeon Gold 6226R processors, each with 16 cores
and a base frequency of 2.9 GHz, 512 GB of DDR4 memory,
and two NVIDIA A100 GPUs with 40 GB of memory each.
This setup ensures efficient parallel processing of large-scale
time-series data and supports high-performance training of
deep learning models. A 2 TB NVMe SSD was used as the
storage device to handle frequent I/O operations and fast
access to large intermediate results. This configuration
supports multi-stage training, parameter tuning, and cross-
validation, ensuring stable performance in resource-intensive
tasks.

For the software environment, the operating system was
Ubuntu 22.04 LTS. Python version 3.10 was used. The deep
learning framework was PyTorch 2.1, combined with CUDA
12.1 and cuDNN 8.9 for GPU acceleration. Data
preprocessing and visualization were performed using
mainstream data science libraries, including Pandas, NumPy,
Matplotlib, and Seaborn. During training, batch management
was handled using PyTorch's DataLoader. The training
process was monitored in real-time with TensorBoard, which
tracked loss trends, parameter updates, and validation
performance.

The experiments followed a standard supervised learning
setup. The dataset was split into training, validation, and test
sets with a ratio of 7:2:1. An early stopping strategy was used
during training to prevent overfitting. The maximum number
of epochs was set to 100. The batch size was 64. The Adam
optimizer was used with an initial learning rate of 1e-4. To
ensure reproducibility, all runs were conducted with fixed
random seeds. Final evaluation results were based on the
average performance across multiple runs.

4.3 Experimental Results

This paper first conducts a comparative experiment, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method MAE RMSE R2

Ours 0.138 0.194 0.931
LSTM[8] 0.184 0.248 0.882
GRU[9] 0.176 0.239 0.891
1DCNN[10] 0.162 0.226 0.903
Transformer[11] 0.149 0.211 0.918

The results in the table show that the proposed deep
regression network achieves the best performance in the
container lifecycle prediction task. The MAE and RMSE reach
0.138 and 0.194, respectively, which are significantly better
than those of the baseline models. This indicates that the model
has stronger fitting capabilities for modeling the temporal
behaviors of containers. It captures complex resource usage
patterns and lifecycle characteristics more accurately,
effectively reducing prediction errors.

Compared to traditional recurrent structures such as LSTM
and GRU, the proposed model shows significant improvements
across all evaluation metrics. While LSTM and GRU possess
certain abilities in modeling temporal sequences, they tend to
suffer from performance bottlenecks when dealing with high-
dimensional features and long-term dependencies. This leads to
unstable prediction accuracy. The proposed model enhances
the ability to capture lifecycle evolution by introducing deeper
nonlinear mappings and dynamic feature fusion mechanisms.
As a result, it performs better in terms of both stability and
generalization.

Both 1D CNN and Transformer models also demonstrate
good regression performance in the experiments. This suggests
that convolutional structures and attention mechanisms are
effective in extracting local and global temporal features.
However, compared to the proposed model, these methods still
face limitations when handling heterogeneous resource loads
and fluctuating service behaviors. They struggle to fully adapt
to the complex dynamics of container lifecycles. The proposed
method addresses this by integrating multi-scale features and
residual structures, which improves robustness against
abnormal lifecycle trends.

Overall, the experimental results confirm the adaptability
and accuracy advantages of the proposed model in the
container lifecycle prediction task. The model performs well in
controlling errors and achieves a high R² score of 0.931. This
reflects its strong ability to fit lifecycle trends. Such capability
is valuable for enabling intelligent resource scheduling and
system alerting at the container level. It provides a reliable
technical foundation for adaptive operations in cloud platforms.

In addition, this paper provides a detailed analysis of how
varying the Dropout rate influences the prediction performance
of the proposed model. By systematically adjusting the
Dropout parameter during training, the study investigates its
effect on the mode's ability to generalize across different data
conditions. To support this analysis, the corresponding model
architecture is illustrated in Figure 2, offering a clear structural
reference for understanding the role of Dropout within the
overall framework.

Figure 2. Analysis of the impact of Dropout rate on model
prediction performance

The results in the figure show that the dropout rate has a
significant impact on the prediction performance of the model.
As the dropout rate increases from 0.0 to 0.3, the MAE value
gradually decreases. This indicates that a moderate dropout
mechanism helps alleviate overfitting during training. The
model focuses more on representative feature expressions,
which improves its generalization ability in predicting
container lifecycles.

When the dropout rate reaches 0.3, the MAE value reaches
its minimum. This suggests that the model performs best at this
level, accurately capturing the temporal characteristics and
resource consumption patterns of container operations. In the
complex task of lifecycle prediction, moderate regularization
improves the model's robustness to input noise and enhances
both stability and accuracy.

However, as the dropout rate further increases to 0.4 and
0.5, the MAE value begins to rise. This suggests that an
excessively high dropout rate weakens the information flow
within the network. The model loses some key structural
information during feature encoding. This loss reduces the
model's sensitivity to changes in service behavior and
decreases the accuracy of lifecycle prediction.

These findings suggest that when designing deep regression
networks for container lifecycle prediction, the dropout
parameter should be carefully set. A proper balance between
model expressiveness and overfitting control is essential.
Choosing an appropriate regularization strategy not only
improves performance on the training set but also enhances the
model's adaptability and generalization in complex cloud
environments.

This paper also gives a comparison of model performance
under different hidden layer dimension settings, and the
experimental results are shown in Figure 3.

Figure 3. Comparison of model performance under
different hidden layer dimension settings

The results in the figure show clear differences in model
performance under different hidden layer dimensions. As the
hidden dimension increases from 32 to 256, the MAE value
continues to decrease. This indicates that expanding the
network capacity at this stage helps enhance the model's feature
representation ability. It enables more effective modeling of
complex nonlinear relationships and temporal dependencies in
container runtime data.

When the hidden dimension reaches 256, the MAE value
drops to its lowest point. This suggests that this configuration
achieves the best balance between modeling capacity and
parameter complexity. For container lifecycle prediction, which
is influenced by many factors, an appropriate hidden size can
effectively extract long-term dependency features. It also
avoids the loss of critical information caused by insufficient
parameters. This improves prediction robustness in multi-
tenant environments.

However, further increasing the hidden dimension to 512
and 1024 leads to a rise in MAE. This indicates that the model
may enter an overfitting state. While larger dimensions
improve representation capacity, they also introduce redundant
parameters. The model becomes overly sensitive to small
variations in the training data, which reduces its generalization
to unseen data. This issue is especially prominent in production
environments where container lifecycles fluctuate significantly.

Moreover, this paper explores the impact of data sampling
frequency on the effectiveness of lifecycle prediction,
emphasizing how different temporal granularities of input data
may influence the model's perception of dynamic patterns. This
aspect is particularly relevant for capturing fine-grained
variations in container behavior. To illustrate this analysis more
intuitively, the corresponding experimental setup and findings
are visually presented in Figure 4.

Figure 4. The impact of data sampling frequency on life
cycle prediction results

The figure shows that data sampling frequency has a
significant impact on the performance of container lifecycle
prediction. The overall trend indicates that as the sampling
interval increases from 5 seconds to 120 seconds, the MAE
value rises steadily. This suggests that high-frequency sampling
provides finer-grained temporal information. It helps the model
capture rapid changes in resource usage during container
execution, thereby improving prediction accuracy.

When the sampling interval is set to 5 or 10 seconds, the
model shows stronger sensitivity in modeling short-term
behaviors and bursty workloads. Container lifecycles are often
influenced by service-level policies, load fluctuations, and
scheduling decisions. A higher sampling frequency preserves
these transient features and offers richer context to the model,
which enhances predictive performance.

However, when the sampling interval increases to 60
seconds or more, the model performance degrades significantly.
This indicates that low-frequency sampling introduces
temporal sparsity in the input data. As a result, the model
struggles to reconstruct the evolution of container states
accurately. Missing information weakens the model's ability to
perceive lifecycle trends and to detect potential anomalies,
leading to prediction bias.

Therefore, this experiment highlights the critical role of
sampling frequency in container lifecycle prediction. A well-
chosen sampling granularity helps balance timeliness and
information richness. It avoids unnecessary computational
costs from over-sampling while ensuring the model receives
sufficient dynamic behavior signals. This provides essential
data support for advancing intelligent resource scheduling in
cloud environments.

Finally, at the end of this paper, a graph is provided to
illustrate the variation of the loss function over training epochs.
This visualization helps to track the model's convergence
behavior and offers additional insight into the training
dynamics and optimization process of the proposed framework,
as shown in Figure 5.

Figure 5. Loss function changes with epoch

The figure shows that the model exhibits a clear
convergence trend throughout the training process. Both
training loss and validation loss decrease steadily. This
indicates that the model is continuously learning key resource
evolution features within the container lifecycle and gradually
optimizing its parameters to improve prediction accuracy. The
stable decline of the loss curves reflects the effectiveness of the
training process and confirms the soundness of the model
architecture and optimization strategy.

The training loss decreases slightly faster than the
validation loss. This suggests that the model fits the training
data efficiently. The validation loss better reflects the model's
generalization ability on unseen data. The validation curve
remains close to the training curve throughout and does not
show a significant rebound in later stages. This indicates that
overfitting does not occur and the model adapts well to the
complex and dynamic behavior of containers in real cloud
environments.

After the 60th epoch, both curves become flat. This
suggests that the model reaches a near-optimal performance
range and further training yields diminishing returns. At this
stage, training mainly fine-tunes the parameters and stabilizes
performance. This provides a more robust foundation for
regression tasks in lifecycle prediction. Such robustness is
especially important for adaptability in multi-tenant and large-
scale deployment environments.

This result confirms that the proposed deep regression
framework demonstrates strong convergence and training
stability. In container lifecycle prediction tasks, stable and fast
convergence not only reduces training time but also builds a
solid basis for efficient inference in production deployments. It
provides critical support for enabling intelligent resource
scheduling in cloud computing systems.

5. Conclusion
This study addresses the problem of lifecycle prediction in

containerized cloud environments. It proposes a deep
regression-based modeling approach that systematically
overcomes limitations in expressiveness, temporal modeling
accuracy, and generalization of existing methods. By

integrating multi-source temporal features and applying
nonlinear mappings, the model accurately captures the dynamic
evolution of resource usage during container execution. This
enables high-precision life-cycle prediction. The introduction
of multi-layer structural optimization and regularization
mechanisms improves prediction accuracy while maintaining
model stability. The model adapts well to complex service
behaviors and resource fluctuations in multi-tenant settings.

A series of well-designed experiments were conducted to
evaluate the model's adaptability across different conditions.
These evaluations considered hyperparameters, data
characteristics, and execution environments. The results show
that the proposed model consistently outperforms mainstream
time-series prediction methods across multiple metrics. It
demonstrates strong practical value and robustness in real cloud
environments. Compared with traditional static scheduling
strategies, this data-driven prediction method enables more
proactive and precise support for dynamic scheduling and
capacity planning. It provides both theoretical and
methodological foundations for intelligent management of
container infrastructures.

The findings not only improve the accuracy of container
lifecycle modeling but also open new directions for automated
resource optimization in cloud-native architectures. In edge
computing, hybrid cloud management, and dense multi-tenant
systems, the model shows good scalability. It can be integrated
as a core component into scheduling systems to improve
resource efficiency, reduce energy consumption, and enhance
system responsiveness and service continuity. This makes it
highly valuable for engineering applications and future
deployment.

Future research may explore extensions of the model
structure by incorporating adaptive learning mechanisms or
reinforcement learning strategies. This would allow lifecycle
prediction to become an active feedback component in
scheduling decisions, forming a closed-loop system for
resource management. Further improvements could involve
multi-modal inputs that combine log analysis, trace data, and
structured metrics. This would enhance the model's ability to
understand system semantics and behavioral logic. As large-
scale service architectures continue to evolve, building more
efficient, intelligent, and interpretable prediction systems will
be an important direction for advancing intelligent cloud
platforms.

References
[1] Wu S, Tao Z, Fan H, et al. Container lifecycle ‐ aware scheduling for

serverless computing[J]. Software: Practice and Experience, 2022, 52(2):
337-352.

[2] Tang X, Liu Q, Dong Y, et al. Fisher: An efficient container load
prediction model with deep neural network in clouds[C]//2018 IEEE Intl
Conf on Parallel & Distributed Processing with Applications, Ubiquitous
Computing & Communications, Big Data & Cloud Computing, Social
Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). IEEE, 2018: 199-206.

[3] Argesanu A I, Andreescu G D. A platform to manage the end-to-end
lifecycle of batch-prediction machine learning models[C]//2021 IEEE
15th International Symposium on Applied Computational Intelligence
and Informatics (SACI). IEEE, 2021: 000329-000334.

[4] Turin G, Borgarelli A, Donetti S, et al. Predicting resource consumption
of Kubernetes container systems using resource models[J]. Journal of
Systems and Software, 2023, 203: 111750.

[5] H. Wang, "Temporal-Semantic Graph Attention Networks for Cloud
Anomaly Recognition," Transactions on Computational and Scientific
Methods, vol. 4, no. 4, 2024.

[6] Kim B S, Lee S H, Lee Y R, et al. Design and implementation of cloud
docker application architecture based on machine learning in container
management for smart manufacturing[J]. Applied Sciences, 2022, 12(13):
6737.

[7] Wang Y, Zhu M, Yuan J, et al. The intelligent prediction and assessment
of financial information risk in the cloud computing model[J]. arXiv
preprint arXiv:2404.09322, 2024.

[8] Shiri F M, Perumal T, Mustapha N, et al. A comprehensive overview
and comparative analysis on deep learning models: CNN, RNN, LSTM,
GRU[J]. arXiv preprint arXiv:2305.17473, 2023.

[9] Nosouhian S, Nosouhian F, Khoshouei A K. A review of recurrent
neural network architecture for sequence learning: Comparison between
LSTM and GRU[J]. 2021.

[10] Ige A O, Sibiya M. State-of-the-art in 1d convolutional neural networks:
A survey[J]. IEEE Access, 2024.

[11] Wen Q, Zhou T, Zhang C, et al. Transformers in time series: A survey[J].
arXiv preprint arXiv:2202.07125, 2022.

	4.1 Dataset
	4.3 Experimental Results

