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Abstract: This paper addresses the challenges of high computational complexity and structural redundancy in the inference
stage of large language models. It proposes a structured pruning method that combines a Pruning Importance Evaluation
Mechanism (PIEM) with a Layer-aware Sensitivity Pruning Strategy (LSPS). The method first constructs a multi-dimensional
structural scoring function. It evaluates the importance of each structural unit in the model by integrating weight distribution,
gradient information, and contextual influence. Then, based on the sensitivity differences across layers, it adaptively adjusts the
pruning intensity. This prevents uniform pruning from damaging performance in highly sensitive layers. Experiments conducted
on the large language model ChatGLM-6B show that the proposed method outperforms existing public pruning strategies across
multiple evaluation metrics. It significantly reduces inference latency while maintaining high model accuracy. It also removes a
larger proportion of redundant structures. In both comparative and ablation experiments, PIEM and LSPS each demonstrate strong
independent effectiveness. When combined, the full method achieves the best results in both inference efficiency and structural
compression rate. Furthermore, inference tests on edge devices and comparisons under different scoring metrics show that the
proposed strategy maintains good stability and adaptability. This confirms its strong generalization ability and practical value in
real-world engineering scenarios. Additional experiments validate that multi-round pruning offers a better depth of compression
and performance retention than one-shot strategies. These findings further support the method's effectiveness in building
lightweight and efficient language models for practical applications.
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1. Introduction
With the rapid development of natural language processing

technologies, large language models (LLMs) have
demonstrated remarkable performance across a variety of real-
world tasks[1,2]. These include dialogue systems, question-
answering, machine translation, and code generation. However,
such models often contain billions or even tens of billions of
parameters. They rely heavily on high-performance computing
resources. In practical deployment, especially on edge devices
or systems with strict latency requirements, the large size and
computational cost of these models present major bottlenecks.
Therefore, reducing computational complexity while
maintaining model performance has become a key challenge in
the engineering of AI models[3].

Model compression offers an effective approach to solving
the deployment challenges of large models[4]. Among various
techniques, structural pruning has gained attention due to its
advantages in model interpretability and hardware friendliness.
Unlike unstructured pruning, structural pruning removes entire
substructures of neural networks, such as attention heads,
layers, or channels. This reduces model size significantly and
enables efficient acceleration. It also allows for straightforward
deployment on mainstream deep-learning frameworks and
hardware platforms. In large language models, structural
pruning can identify redundant components, cut down

computational loads, and lower latency. This helps improve
inference efficiency[5].

Inference acceleration for large language models is not only
a computational requirement. It is also essential for enabling
large-scale real-world applications. In scenarios such as
intelligent customer service, mobile assistants, and industrial
automation, systems are highly sensitive to response speed and
resource consumption. Large models are often difficult to
deploy directly. Model compression techniques are needed to
optimize and streamline them. Structural pruning reduces
model parameters effectively. It improves execution speed
while preserving task performance. This provides technical
support for resource-constrained applications[6].

From a broader perspective, advancing research on
structural pruning in LLMs is a crucial step toward sustainable
AI. The energy consumption of training and using large models
is becoming a global concern. It has sparked discussions about
green AI. Structural pruning reduces the number of
computations and memory accesses. This helps lower carbon
emissions and energy use during inference. As a result, large
models can pursue performance goals while aligning with
energy-efficient and environmentally friendly development.
This contributes not only to the sustainability of the technology
but also provides greener and more efficient solutions for both
industry and academia[7].



Therefore, research on structural pruning algorithms for
inference acceleration in LLMs is vital for improving model
efficiency. It also plays a key role in promoting the widespread,
efficient, and sustainable development of AI. By exploring the
relationship between pruning strategies and model architectures,
researchers can uncover redundant structures within models.
This may allow for a better balance between computational
cost and performance without sacrificing core capabilities.
Such efforts are important for enhancing the engineering
applicability of AI and accelerating its deployment across a
wide range of practical scenarios.

2. Related work
2.1 Large Language Model

As one of the core technologies in natural language
processing in recent years, large language models (LLMs) have
significantly improved the overall performance of language
understanding and generation[8]. This is due to their massive
number of parameters and strong self-supervised learning
capabilities. These models are trained on large-scale text
corpora. They learn deep semantic structures and contextual
dependencies in language. This enables them to handle various
complex language tasks[9,10]. Compared with traditional
shallow models or task-specific models, LLMs demonstrate
clear advantages in generalization and transferability. They
achieve unified modeling across tasks such as text
classification, question answering, machine translation, and
summarization. The "pretraining and fine-tuning" paradigm not
only raises the performance ceiling but also drives NLP
technology toward greater generality and power[11].

As model size continues to grow, the performance gains of
LLMs come with a steep increase in computational cost.
Mainstream LLMs typically contain billions to tens of billions
of parameters. Their training and inference require massive
resources[12]. They rely heavily on high-performance
computing platforms and demand substantial memory,
bandwidth, and power. This high resource consumption poses
serious obstacles to deployment and real-world applications.
The challenges are especially significant in large-scale
deployments on mobile devices, embedded systems, or cloud
services. Although LLMs show excellent capabilities, they face
pressing engineering challenges. Efficient inference has
become a critical issue that needs urgent solutions[13].

Against this background, model structure optimization and
compression have emerged as key research directions. The goal
is to reduce computational cost and parameter size while
minimizing performance loss. In the inference phase, structural
optimization of LLMs helps reduce latency and improve user
experience[14]. It also accelerates deployment and execution in
practical settings. Recent research has explored more efficient
architecture designs, finer-grained parameter utilization, and
smarter module pruning strategies. These efforts aim to enable
better management and flexible use of LLMs. This trend
suggests a shift from the pursuit of scale to a deeper focus on
efficiency. It supports the widespread adoption of LLMs across
a broad range of intelligent systems[15].

2.2 Model pruning
Model pruning is one of the key techniques for compressing

and accelerating deep neural networks. It aims to improve
inference efficiency by removing redundant or unimportant
parameters and structural modules. This reduces model size
and computational complexity. Pruning was initially used in
computation-heavy tasks such as image recognition. As the
parameter size of NLP models, especially large language
models, has grown rapidly, pruning has become an important
solution for deployment challenges[16]. Compared with other
compression methods like quantization and distillation, pruning
offers better structural controllability. It directly affects the
inference path of the model. As a result, it provides clear
advantages in hardware friendliness and deployment
flexibility[17].

Based on the level of granularity, model pruning can be
divided into unstructured pruning and structured pruning.
Unstructured pruning removes individual weight parameters. It
can achieve high sparsity. However, it often requires
customized hardware to realize real acceleration. Structured
pruning removes entire channels, layers, attention heads, or
other submodules. This simplifies the overall network
architecture. It typically results in a more significant speedup. It
also integrates more easily with existing inference frameworks
and hardware systems. This is especially suitable for large
language models, which have clear hierarchies and modular
structures. Due to its theoretical and practical advantages,
structured pruning has become a major research focus in recent
years[18].

In the context of large language models, structured pruning
presents a complex landscape of both challenges and
opportunities. On the one hand, these models are known to
contain a high degree of parameter redundancy, which allows
for the removal of certain components without immediately
degrading performance. This redundancy provides a valuable
entry point for model compression, offering the potential to
streamline architectures and reduce computational load[19].
However, the internal design of large language models is
highly intricate. They rely on mechanisms such as multi-head
attention, deeply stacked layers, and strong contextual
dependencies[20]. These features make the structure tightly
coupled and sensitive to disruption. As a result, indiscriminate
or overly aggressive pruning can lead to significant degradation
in model accuracy, fluency, or generalization capability. The
delicate balance between eliminating redundancy and
preserving essential functionality underscores the technical
difficulty of effective pruning.

Given these challenges, recent research efforts have moved
toward developing more intelligent and controllable pruning
strategies. The focus has shifted from simplistic, one-size-fits-
all approaches to methods that can adapt to the unique
characteristics of different model components. This includes
the use of importance-based evaluation metrics to identify
which parameters or substructures contribute most to
performance, as well as adaptive techniques that tailor pruning
intensity according to the sensitivity of different layers or
modules. In addition, some approaches incorporate joint
optimization strategies, aligning pruning decisions with broader



model objectives such as latency reduction or energy efficiency.
Structured pruning, particularly when designed with inference
acceleration in mind, is increasingly seen as a promising route
toward achieving lightweight, deployable large language
models. It represents not only a path to greater computational
efficiency but also an avenue for expanding the practical
usability of advanced language technologies in real-world
settings.

3. Method
This study addresses the computational bottlenecks faced

by large language models during inference. It proposes a
structured pruning method designed for inference acceleration.
The goal is to achieve efficient structural optimization while

preserving the core performance of the model. The key
innovations of this method are as follows. First, a Pruning
Importance Evaluation Mechanism (PIEM) is introduced. It
uses multi-dimensional metrics to dynamically score the
importance of model substructures. This improves the
precision of pruning decisions. Second, a Layer-aware
Sensitivity Pruning Strategy (LSPS) is proposed. It controls
the pruning intensity based on the sensitivity differences
across layers during inference. This enhances the flexibility
and stability of structural adjustment. Together, these two
innovations form a scalable and controllable pruning
framework tailored for acceleration in large language models.
The framework provides methodological support for efficient
deployment in resource-constrained environments. The
architecture of the overall model is illustrated in Figure 1.

Figure 1. Overall model architecture diagram
3.2 Pruning Importance Evaluation Mechanism

To accurately identify redundant structures in large
language models, this study introduces a pruning importance
evaluation mechanism (PIEM) designed to quantify the
contribution of each substructure to the model's overall
performance. This mechanism serves as a foundation for
informed pruning decisions, aiming to distinguish between
essential and non-essential components within the network. By
assigning importance scores, it becomes possible to determine
which elements can be removed with minimal impact on
functionality. The evaluation process focuses on structural
units such as attention heads and feedforward network layers,
which play pivotal roles in language modeling tasks. Rather
than relying on a single metric, PIEM incorporates
information from several analytical perspectives to form a
more nuanced understanding of structural relevance.

The core idea behind PIEM is to integrate multi-
dimensional indicators to produce a comprehensive
importance assessment. These indicators may include, for
example, weight distribution, activation patterns, gradient
behavior, and the contextual contribution of each unit within
the broader network. By leveraging these diverse inputs, the
mechanism enables a more balanced and data-driven
assessment of which substructures are redundant and which
are critical. This integrated evaluation allows the pruning
process to be more targeted and reliable, reducing the risk of
inadvertently removing components that are vital to model
integrity. As a result, PIEM enhances both the stability and
adaptability of the overall pruning strategy, ensuring that
structural optimization aligns to maintain core model
performance. The module architecture of PIEM is illustrated
in Figure 2.



Figure 2. PIEM module architecture

Assume that the large language model consists of L
layers, each layer contains multiple structural units

},...,,{ 21 nuuu . We introduce an importance scoring function

)( iuI to measure the contribution of unit iu to the model.
The basic form of the scoring function is:
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weight, reflecting its parameter strength, )( iuL represents
the change in loss after shielding the unit, and the weight
factor 21, is used to regulate the relative importance of
the two indicators.

On this basis, the hierarchical sensitivity factor
]1,0(l is introduced to represent the sensitivity of the lth

layer in the overall structure, which is used to normalize the
scores of different layers to avoid excessive pruning of the
upper or lower layers. The final normalized importance score
is:
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This formula ensures that the scores of structural units
within each layer are comparable, while also reflecting the
global impact of inter-layer structures on the pruning strategy.

To further enhance the generalization of pruning

evaluation, the gradient-based evaluation term ||
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introduced and incorporated into the scoring function to form
the final evaluation expression:
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Where  is the gradient term adjustment coefficient.
This expression combines the importance of the structure itself,
the impact of the hierarchy, and its sensitivity to the loss
function, making the scoring mechanism more universal and

discriminable in different types of structures, providing a
stable and reliable basis for subsequent structural pruning
strategies.

3.3 Layer-aware Sensitivity Pruning Strategy
To further improve the flexibility and accuracy of the

pruning strategy for large language models, this study
designed a layer-aware sensitivity pruning strategy (LSPS) to
dynamically adjust the pruning strength of each layer and
alleviate the performance loss caused by a uniform pruning
ratio. This strategy is based on the sensitivity differences of
different layers of the model during the reasoning process and
combines the importance score and response changes of each
layer structure to perform differentiated simplification of the
model at the structural level, thereby achieving more efficient
reasoning acceleration while ensuring stable performance. Its
module architecture is shown in Figure 3.

Figure 3. LSPS module architecture
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Where )(l represents the sensitivity weight of the lth
layer, )( )(l

iuI is the importance score, and  is the
balance coefficient of the gradient term.

To capture the sensitivity differences between layers, a
global sensitivity estimation indicator is introduced:
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This formula measures the impact of the overall structure
unit of the lth layer on the loss function. The higher the value,
the less suitable it is for pruning this layer.

Based on the score, a pruning threshold )(l is set for
each layer, and the structural units below the threshold are
marked as pruning parts, which are defined as follows:
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Where )(lM is the set of structures to be removed in
the lth layer. By introducing the adaptive threshold )(l ,
dynamic control of the retention strength of different layers
can be achieved. To ensure that the overall pruning ratio meets
the expected range ]1,0[ , a normalization adjustment
mechanism is introduced:
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Where )(l represents the target pruning rate of the lth
layer, and the quantile function is used to extract the
corresponding scoring threshold to ensure that the pruning
operation is controllable and differentiated across the entire
layer.

This pruning strategy effectively integrates hierarchical
sensitivity and structural importance scoring. While ensuring
the stability of the core structure of the model, it improves the
selectivity and robustness of the pruning strategy, providing
theoretical support and methodological basis for building a
large language model with efficient reasoning.

4. Experimental Results
4.1 Dataset

This study uses the OpenWebText dataset as the
foundational data source for the development and evaluation
of the model pruning strategy. OpenWebText is a widely used
English corpus composed of high-quality web content. It is
designed to simulate and reconstruct the distribution of
training data commonly used for large language models. The
dataset includes various types of texts such as news articles,
blogs, reviews, and forum posts. It features rich content,
diverse semantics, and natural language structures, making it
suitable for pretraining, fine-tuning, and compression research
of large-scale language models.

The data in OpenWebText is collected mainly from high-
authority web links that are publicly available in open-source
communities. The text content has been rigorously denoised
and cleaned to ensure high language quality and low noise
levels. The dataset is large in scale, containing billions of
words. It effectively captures the contextual and semantic
structures required by large language models. This supports
the development of general representations across various
language understanding and generation tasks.

For model compression and acceleration tasks,
OpenWebText offers rich context and vocabulary coverage.
This enables effective assessment of the importance and
sensitivity of different model layers under realistic data
conditions. Building evaluation mechanisms on this dataset
ensure that pruning strategies remain generalizable and
practically adaptable to typical language tasks. It also provides
a stable and high-quality data foundation for subsequent model
deployment.

4.2 Experimental setup
This study conducts pruning strategy experiments based

on the ChatGLM-6B model. ChatGLM-6B is a large language
model built on a bidirectional autoregressive architecture. It
demonstrates strong performance in Chinese language
modeling and generation. The model is widely used in multi-
turn dialogue, question-answering, and text-generation tasks.
It contains approximately 6 billion parameters and exhibits
typical structural characteristics of large models. This makes it
a suitable platform for validating structural pruning methods.
The experiments focus on structural compression efficiency
during inference. They evaluate the impact of different
pruning ratios on inference resource usage and structural
retention.

To ensure consistency, all experiments are conducted on
the same hardware platform. FP16 precision is used
throughout. Several paragraphs from the OpenWebText
dataset are selected for inference testing. The pruning process
is applied only to the attention heads in the Transformer layers
and the channels in the MLP layers. The base network
architecture remains unchanged. The following section
provides the detailed experimental setup. Its detailed
configuration is shown in Table 1.

Table 1: Parameter settings
Parameter Value
Model ChatGLM-6B
Parameter scale 6.2 Billion
Pruning strategy PIEM + LSPS
Computing Platform NVIDIA A100 × 2
Precision settings FP16
Enter the maximum length 2048 tokens
Dataset OpenWebText
Pruning Objects Attention Heads, MLP Units

4.3 Experimental Results

1) Comparative experimental results

This paper first gives the comparative experimental results,
as shown in Table 2.

Table2: Comparative Results on ChatGLM-6B under
Structure Pruning

Method Avg.
Latency

Retained
Accuracy

Structural
Redundancy

Movement
Pruning[21]

117.9 87.8 33.2

Wanda[22] 111.3 90.5 37.4
SparseGPT[23] 104.7 89.2 35.6
Ours 88.6 92.3 48.1

As shown in the table, the pruning method proposed in this
paper demonstrates significant advantages in inference
acceleration. Under the same structural pruning ratio, the
proposed method achieves an average inference latency of 88.6
ms. This is lower than that of SparseGPT, Wanda, and
Movement Pruning. It indicates that the use of structural
importance evaluation and layer-aware strategies helps to
effectively identify and eliminate redundant computation paths.



As a result, the model's response speed during inference is
significantly improved.

In terms of maintaining model performance, the proposed
method also achieves superior retained accuracy. The retained
accuracy reaches 92.3 percent, which is higher than all the
baseline methods. This shows that the pruning strategy not only
achieves compression but also preserves the model's semantic
understanding and generation capabilities. By accurately
evaluating the importance of pruning units, the method avoids
damaging critical structures. Therefore, the quality of the final
output is not significantly affected.

The comparison of structural redundancy further validates
the pruning efficiency of the proposed method. Under the same
pruning ratio, the method removes 48.1 percent of ineffective
structures, which is notably higher than other approaches. This
improvement is attributed to the introduction of the layer-aware
sensitivity mechanism. It allows the model to flexibly control
pruning strength according to the importance of different layers.
This enhances the overall structural optimization. In contrast,
other methods often rely on uniform or static rules, which
cannot fully capture internal structural differences in the model.

Overall, the proposed method achieves a better balance
between structural compression and performance retention.
Compared with traditional pruning approaches, it not only
improves inference efficiency but also shows stronger
robustness and adaptability in terms of accuracy and structural
optimization. These results verify the potential of this strategy
for compressing large language models.

2) Ablation Experiment Results

This paper also further gives the results of the ablation
experiment, and the experimental results are shown in Table 3.

Table 3: Ablation Experiment Results
Method Avg. Latency Retained

Accuracy
Structural
Redundancy

Baseline 123.4 85.7 0.0
+PIEM 102.1 89.6 37.9
+LSPS 108.3 88.4 34.2
Ours 88.6 92.3 48.1

As shown in the ablation results in Table 3, the two core
components proposed in this study— the Pruning Importance

Evaluation Mechanism (PIEM) and the Layer-aware
Sensitivity Pruning Strategy (LSPS) — play critical roles in
improving both pruning efficiency and performance retention.
The baseline model, without any structural pruning, retains all
parameters. However, it shows a high inference latency of
123.4 ms. This indicates a clear computational bottleneck. The
retained accuracy is only 85.7 percent, revealing the negative
impact of structural redundancy on model performance.

When the PIEM mechanism is introduced, the model can
selectively prune structural units based on their importance.
The average inference latency drops significantly to 102.1 ms.
At the same time, the retained accuracy improves to 89.6
percent. This shows that PIEM can effectively identify and
remove redundant structures while avoiding damage to critical
computation paths. The structural redundancy index also
increases to 37.9 percent, further demonstrating that PIEM
releases substantial computational resources and lays the
foundation for model slimming.

When only LSPS is used, the model's latency is reduced to
108.3 ms. Although this is not as significant as PIEM, the
pruning effect is still notable, with 34.2 percent of redundant
units removed. This suggests that LSPS is valuable in
dynamically adjusting compression strength across different
layers. It helps prevent the loss of important information that
could occur with uniform pruning ratios. This is especially
useful for large language models, which often exhibit
significant variation across layers.

The complete method, which combines PIEM and LSPS,
achieves the best results across all three core metrics. It
produces the lowest average latency of 88.6 ms, the highest
retained accuracy of 92.3 percent, and the largest proportion of
structural redundancy removed at 48.1 percent. These results
confirm the complementarity and synergy between the two
modules. They show that the proposed pruning framework not
only enables efficient inference acceleration but also preserves
the model's semantic understanding and generation capabilities
to the greatest extent. This demonstrates strong practicality and
potential for broader application.

3) Inference efficiency test of the pruning strategy on edge
devices

This paper further presents an inference efficiency test of
the pruning strategy on edge devices, and the experimental
results are shown in Figure 4.



Figure 4. Inference efficiency test of pruning strategy on edge devices.

As shown in the experimental results in Figure 4, the
proposed structured pruning strategy demonstrates strong
inference efficiency across various edge devices. In resource-
constrained environments such as Raspberry Pi 4 and Jetson
Nano, pruning significantly reduces average inference latency.
Among all devices, Intel NUC achieves the lowest latency at
87.6 ms. This highlights the acceleration potential of the
pruning strategy in real-world deployment. These results
indicate that the proposed method is not only suitable for high-
performance computing platforms but can also be effectively
transferred to lightweight devices.

The reduction in inference latency results from the efficient
removal of redundant structures in the model. As shown in the
right-hand graph, the structural redundancy removal ratio
reaches 51 percent on Intel NUC and 48 percent on Edge TPU.
This indicates that the pruning strategy successfully identifies
and eliminates many modules that do not contribute
meaningfully to inference. Such efficient structural trimming
improves execution speed and reduces the model's runtime
dependency on memory and bandwidth. It provides a viable
solution for deploying large language models on edge devices.

It is worth noting that the differences in redundancy
removal ratios across devices reflect the varying compatibility

between the pruning strategy and the operational characteristics
of each platform. The layer-aware sensitivity mechanism
introduced in this study enables the model to adjust its structure
according to hardware-specific features. This helps achieve
optimal inference configurations for different platforms. Such
deployment-oriented pruning design enhances adaptability and
supports extension to heterogeneous computing environments.

In summary, the proposed pruning method is not only
theoretically effective but also shows strong practical value in
real-edge device testing. It achieves a good balance between
inference latency and structural compression. This further
validates the utility and generalization ability of the importance
evaluation mechanism and layer-aware pruning strategy in
complex scenarios. The results provide a reliable foundation
for future deployment across multiple devices.

4) Comparison of pruning effects based on different
importance scoring indicators

This paper also gives a comparison of pruning effects based
on different importance scoring indicators, and its module
architecture is shown in Figure 5.

Figure 5. Comparison of pruning effects based on different importance scoring indicators



Figure 5 illustrates the variation in pruning effectiveness
under different pruning ratios using the importance scoring
metric. In the left graph, as the pruning ratio increases from 0.1
to 0.5, the retained accuracy gradually decreases from 94
percent to 86 percent. This shows a relatively linear downward
trend. It indicates that as more redundant structures are
removed, model performance is inevitably affected. However,
the drop remains within a reasonable range. This suggests that
the scoring metric is robust and accurate. It helps avoid the
mistaken removal of critical computation paths during pruning.

The right graph shows how the structural redundancy
removal ratio changes with the pruning ratio. The results
indicate that pruning efficiency improves steadily as the
pruning ratio increases. The removal ratio eventually reaches
around 53 percent. This trend confirms that the importance
scoring metric is effective in evaluating the influence of
different structures. It can accurately identify and prioritize
low-value modules for removal. This significantly reduces
computational overhead and provides structural support for
inference acceleration.

The comparison between the two subplots reflects the
trade-off between performance retention and compression

efficiency. As pruning becomes more aggressive, the retained
accuracy drops slightly. However, the benefits of redundancy
removal increase noticeably. This trend aligns with the design
goal of the proposed importance evaluation mechanism. It aims
to balance compression and functionality through multi-
dimensional scoring, enhancing the intelligence and
adaptability of the pruning strategy. In summary, the results in
Figure 5 highlight the critical role of using a well-designed
scoring mechanism in pruning strategies. The proposed scoring
framework achieves a dynamic balance between accuracy
control and structural compression. It demonstrates strong
generalizability and stability under different compression
demands. This provides essential support for the efficient
deployment of large language models.

5) Comparative analysis of the effects of multi-round
pruning and single-round pruning strategies

This paper also gives a comparative analysis of the
effects of multi-round pruning and single-round pruning
strategies, and the experimental results are shown in Figure 6.

Figure 6. Comparative analysis of the effects of multi-round pruning and single-round pruning strategies

Figure 6 presents a comparison between multi-round
pruning and one-shot pruning in terms of inference efficiency
and structural compression. From the accuracy bar chart on the
left, it can be seen that the model using the multi-round pruning
strategy retains higher accuracy, around 92.3 percent. In
contrast, one-shot pruning achieves only about 88.5 percent.
This indicates that a gradual pruning process helps avoid a
sharp performance drop caused by removing too many
important structures at once. It allows more precise control
over accuracy loss.

The middle bar chart shows the difference in inference
latency between the two pruning strategies. Multi-round
pruning significantly reduces the average latency to 88.6 ms. In
comparison, one-shot pruning results in 114.2 ms. This result
shows that multi-round pruning not only compresses the model

structure but also reconstructs the execution path more
effectively. It removes redundant computation units, enabling
better response speed in deployment. This is especially
beneficial for edge or low-resource environments.

The right-hand graph shows the proportion of structural
redundancy removed. Multi-round pruning reaches 48 percent,
while one-shot pruning achieves only 36 percent. This indicates
that the multi-round strategy supports finer structural control. It
uncovers more hidden redundancy and increases the depth of
compression. The layer-wise feedback mechanism adapts to the
varying importance of different layers, enhancing the
completeness and effectiveness of model compression.

Taken together, the three subfigures show that the multi-
round pruning strategy maintains model performance while
achieving greater structural optimization and inference
acceleration. This confirms the practicality and engineering
feasibility of the proposed method under real deployment
conditions. The strategy demonstrates the advantage of



progressive compression over one-shot removal. It represents
an important path for improving the quality of pruning in large
language models.

6) Loss function drop graph

Finally, this paper gives a loss function decline graph, as
shown in Figure 7.

Figure 7. Loss function drop graph

Figure 7 shows the loss curve during the training process
using the proposed method. As the number of training epochs
increases from 1 to 20, the overall loss value shows a clear
downward trend. It decreases from an initial value of 2.1 to
approximately 0.62. This reflects the model's gradual
convergence and stable optimization under the influence of the
pruning strategy. The smooth and continuous decline indicates
that the training process is both effective and stable. It also
shows that the designed pruning mechanism does not cause
abrupt changes or convergence difficulties during parameter
updates.

The steady decrease in loss not only confirms the
trainability of the pruned model but also indirectly validates the
rationality of the pruning strategy in preserving structural
integrity. Through the combined effects of structural
importance evaluation and layer-aware strategies, the pruned
model retains critical paths and essential feature representations.
This ensures effective gradient flow and the capacity for
representation learning during training, which is essential for
the compression of large language models.

Moreover, the curve continues to decline gradually in the
later stages of training, particularly after epoch 10. This
suggests that the model does not suffer from early convergence
or overfitting. It shows that the pruning mechanism avoids
removing too many structures at early stages and leaves room
for further optimization in later training. This progressive and
adaptive pruning process demonstrates the dynamic and
controllable nature of structural compression. It aligns well
with the optimization needs of complex neural network pruning.

In summary, the results in Figure 7 further validate the
effectiveness of the proposed method from the perspective of
training convergence. The continuous decline in the loss
function shows that the pruned model retains sufficient
expressive power. It also reflects the strong emphasis placed on

model optimizability during the design of the pruning
evaluation metrics and layer control strategies. This serves as
key evidence supporting the stability of the pruning approach.

5. Conclusion
This paper addresses the efficiency bottlenecks faced by

large language models during inference. It proposes a
structured pruning method that integrates a Pruning Importance
Evaluation Mechanism (PIEM) with a Layer-aware Sensitivity
Pruning Strategy (LSPS). The method builds a multi-
dimensional scoring system to accurately identify redundant
units in the model. It also adjusts the pruning strength across
layers based on their relative importance in the task. This
approach compresses the model structure effectively while
preserving core representational capacity. It significantly
improves inference efficiency and offers a new solution to the
challenges of high deployment cost and poor real-time
performance in large language models.

Experiments conducted on the mainstream ChatGLM-6B
model demonstrate the effectiveness of the proposed strategy
across multiple key performance indicators. The method
reduces average inference latency significantly while
maintaining high semantic understanding and generation
accuracy. Results from testing on various edge devices further
show that the method has strong transferability and hardware
adaptability. It performs efficiently in resource-constrained
environments. These findings indicate the method's generality
and practical value in real-world model compression
applications.

The paper also includes a series of comparative, ablation,
and extended experiments. These experiments evaluate the
proposed pruning mechanism from the perspectives of
interpretability, stability, and robustness. The results further
strengthen the theoretical and practical foundation of the
method. From dynamic control in importance scoring to layer-
wise pruning adaptation, the method forms a systematic and
scalable framework for structural optimization. This framework
is not only suitable for language models but also has the
potential to be applied to image, audio, code, and other
multimodal tasks. It expands the applicability of model
compression across diverse areas of artificial intelligence.

6. Future work
Future research can explore the scalability of the pruning

strategy on larger models and investigate its integration with
other parameter-efficient fine-tuning techniques such as LoRA
and Adapters. It is also worth considering the combination of
pruning with knowledge distillation and transfer learning to
build a unified compression framework across tasks and
platforms. In terms of real-world applications, the findings of
this study provide key model optimization support for
intelligent dialogue systems, edge computing devices, and real-
time question-answering systems. This has the potential to
advance the deployment and sustainable development of large
language models in resource-sensitive scenarios.
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