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Abstract: This paper addresses the conflict between personalization effectiveness and privacy protection in federated
recommendation systems. It proposes a collaborative optimization method that integrates local interest guidance with a
differential privacy mechanism. The goal is to enhance both recommendation performance and security under the condition of
data isolation across multiple parties. Specifically, a personalized model aggregation strategy based on local interest embeddings
is designed. By incorporating user preference features into the global model update process, the model can adaptively capture
individual differences among clients during aggregation. At the same time, to reduce the negative impact of privacy protection on
model performance, a differential privacy-driven personalized update mechanism is introduced. This mechanism ensures the non-
inferability of user data while applying a gradient-guided noise regulation strategy. It helps preserve the local model's ability to
represent individual interests. Multiple comparative experiments conducted on standard recommendation datasets show that the
proposed method outperforms representative federated recommendation models across various metrics. It also demonstrates
strong robustness and stability under highly non-independent data distributions and high noise settings. Further ablation studies
confirm the independent and joint contributions of the two key modules in enhancing the model's personalization capacity and
resistance to interference. These results highlight the method's ability to achieve an effective balance between privacy protection
and recommendation quality.
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1. Introduction
In the current digital age, the explosion of information and

the flood of data have made users increasingly reliant on
recommendation systems to access personalized content. These
systems analyze user behavior, preference patterns, and content
features to achieve accurate individual-level information
matching. However, traditional recommendation systems are
often built upon the centralized collection and processing of
large-scale data [1,2]. While this architecture improves
recommendation accuracy to some extent, it also leads to
serious privacy concerns. As users become more aware of data
security, protecting personal privacy has become a fundamental
requirement for building trustworthy recommendation systems.
Therefore, achieving effective personalized recommendations
while preserving user privacy has become one of the key
challenges in recommendation system research [3].

Federated learning, as an emerging paradigm of distributed
machine learning, enables collaborative model training without
sharing raw data. Its core idea is to keep data local while
multiple participants jointly train a global model. This
approach helps mitigate privacy leakage risks. Integrating
federated learning into recommendation systems offers a novel
solution to the trade-off between privacy protection and

personalized modeling. With this mechanism, recommendation
systems can support cross-device and cross-platform
information sharing without centralizing users' sensitive data.
This not only enhances the flexibility of data usage but also
builds user trust in the platform, laying a technical foundation
for the continued development of privacy-aware
recommendation systems [4].

However, federated recommendation systems also face
significant challenges. Data heterogeneity across user devices,
imbalanced computational capabilities, and limited
communication bandwidth all place greater demands on model
training stability and efficiency. More critically, privacy-
preserving mechanisms such as differential privacy or secure
multi-party computation often reduce model performance while
protecting data. The core value of recommendation systems lies
in accurately predicting user interests [5,6]. Excessive privacy
constraints may weaken personalized modeling. Thus,
achieving coordinated optimization between privacy protection
and model accuracy is crucial for making federated
recommendation systems practical [7].

From a modeling perspective, personalized
recommendation is essentially a dynamic learning process. It
requires continuously capturing changes in user interests and



contextual features. In a federated environment, personalized
modeling demands models with strong generalization ability
and fast adaptation to individual preferences based on local
data. This process is influenced by various factors, such as data
sparsity, limited feedback signals, and the non-stationary nature
of user behavior [8]. To enhance personalization, it is necessary
to design more efficient user modeling strategies. These
strategies must be deeply integrated with the federated learning
mechanism to ensure that recommendation models can respond
to individual differences while maintaining overall learning
stability and efficiency.

Against this backdrop, studying the coordinated
optimization of privacy protection and personalized modeling
in federated recommendation systems has both theoretical and
practical significance. On one hand, it promotes the application
of privacy-preserving technologies in recommendation
scenarios, offering a more balanced technical solution between
data security and intelligent services. On the other hand, such
research supports the evolution of recommendation system
architectures toward more distributed and transparent
frameworks, laying the groundwork for multi-party
collaborative intelligence [10]. Furthermore, these findings can
provide general-purpose paradigms and solutions for
personalized services in other sensitive domains, such as smart
healthcare, financial risk control, and social media. In summary,
the coordinated optimization of privacy protection and
personalization in federated recommendation systems not only
responds to both technological progress and societal needs but
also offers a forward-looking direction for the development of
trustworthy artificial intelligence.

2. Related work
2.1 Federated Learning

Federated learning, as a rapidly evolving paradigm of
distributed machine learning, aims to enable collaborative
modeling across multiple parties while preserving data privacy.
Its core idea is to train models locally on multiple clients
without sharing raw data [11]. These clients upload local
model parameters or gradients to a central server for
aggregation and global model updating [12]. This process is
typically carried out in multiple rounds. It not only reduces the
risk of data leakage but also avoids single points of failure and
storage bottlenecks that may occur in traditional centralized
learning. Federated learning was originally designed to
address the problem of data silos in sensitive domains such as
finance and healthcare. In these sectors, data are difficult to
share but high-quality joint modeling is still needed. Therefore,
federated learning safeguards data sovereignty while providing
a new path for large-scale machine learning under privacy
constraints [13].

Key topics in federated learning research include
communication efficiency, model aggregation strategies, and
handling system heterogeneity. Since participating devices
often vary in computing power, network conditions, and data
distributions, training can suffer from inefficiencies or
degraded model performance. To address this, researchers
have proposed various communication optimization

techniques. These include model compression, update
frequency control, and asynchronous training mechanisms to
reduce communication overhead[14]. Meanwhile, to improve
performance under non-independent and identically
distributed (Non-IID) data, many aggregation strategies have
been enhanced. Examples include personalized modeling,
weighted aggregation, and adversarial training. These methods
improve the global model's ability to adapt to local differences.
Such developments significantly increase the practicality and
flexibility of federated learning in real-world applications [15].

Beyond the general federated learning framework,
several task-specific variants have emerged, such as federated
transfer learning, federated multi-task learning, and federated
personalized learning. These variants demonstrate the
adaptability of federated learning to different data properties
and task requirements. For instance, in recommendation
systems where user preferences are highly diverse, federated
personalized learning focuses on improving individual model
performance without compromising user privacy. This is often
achieved through meta-learning, model hierarchies, or local
fine-tuning. These techniques help balance local adaptation
and global collaboration. They also enhance federated
learning's ability to capture individual differences and support
the shift from unified models to customized models. This
better meets the needs of personalized services.

Overall, federated learning serves as a critical link
between privacy protection and distributed collaboration. It
shows great promise in both theoretical exploration and
engineering practice[16]. Its initial applications in
recommendation systems, speech recognition, and medical
diagnosis have validated its potential as a new learning
paradigm. However, federated learning still faces challenges
related to stability, scalability, and security. These include
preventing inference attacks during model synchronization and
managing data updates from long-term offline devices.
Therefore, further research on federated learning is not only
important for advancing privacy-preserving machine learning
but also essential for building trustworthy and reliable
intelligent systems.

2.2 Personalized modeling recommendation algorithm

Personalized modeling is a central research topic in
recommendation systems. Its goal is to generate content
recommendations that match individual needs based on user
behavior, interests, and contextual information [17]. As the
number of users and the scale of information grow rapidly,
recommendation systems are shifting from unified approaches
to more fine-grained and adaptive personalization. The key to
personalized modeling lies in accurately capturing user
preferences and dynamically adjusting recommendation
strategies to reflect changes in user interests over time. This
process involves extracting effective features from user
interactions, building robust user representations, and designing
flexible model architectures. In recent years, advances in deep
learning have supported the integration of multi-dimensional
features such as historical behavior, content semantics, and



social relations. These developments have provided powerful
tools for improving recommendation performance [18].

Currently, mainstream approaches to personalized
recommendation can be categorized into collaborative filtering
models, content-based models, and hybrid modeling strategies.
Collaborative filtering identifies similarities between users or
between users and items to make recommendations. It offers
scalability and flexibility, and performs well in the absence of
explicit feedback. However, it is sensitive to data sparsity and
cold-start problems [19]. Content-based models rely on item
attributes or user profiles to make predictions. They can
partially address cold-start issues but often lead to information
isolation and fail to capture user-to-user relationships. Hybrid
modeling strategies have emerged as a promising direction. By
combining collaborative filtering with content features and
incorporating context-aware mechanisms, these methods
enhance the generalization and diversity of recommendation
systems [20].

A major challenge in personalized modeling lies in
effectively managing the dynamic and nonlinear nature of user
behavior. User preferences are rarely static; they change over
time due to shifts in interests, contexts, or external influences.
Traditional recommendation models often rely on static
representations of long-term user preferences, which fail to
capture these evolving patterns. This limitation reduces the
ability of such models to provide timely and contextually
relevant recommendations. As user engagement with content
becomes increasingly fluid, the need for models that can
dynamically adapt to behavioral changes becomes critical for
delivering effective personalization [21].

To address this challenge, researchers have explored a
range of advanced techniques, including sequential modeling,
graph neural networks (GNNs), and attention mechanisms.
Sequential modeling captures the temporal dependencies in
user interactions, enabling the system to understand how recent
behaviors influence current interests. Graph neural networks
allow for the modeling of intricate relationships between users
and items while maintaining structured representations of
social or semantic information. Attention mechanisms further
enhance modeling capacity by dynamically weighting
behavioral features based on their relevance, enabling the
model to focus on the most informative aspects of user activity.
Together, these techniques expand the expressive power and
adaptability of recommendation models, playing a key role in
the ongoing advancement of personalized modeling approaches.

Despite the progress, personalized modeling still faces
several practical challenges. First, it is essential to balance
recommendation accuracy with model complexity and
computational cost, especially in real-world deployments.
Second, personalized modeling relies on large volumes of user
data. This creates difficulties under increasingly strict data
privacy regulations. Enabling effective personalization while
preserving privacy has become a critical research problem. In
addition, model interpretability is gaining attention, particularly
in domains like finance and healthcare where transparency is
crucial. The explainability of recommendations affects user
trust and acceptance. Therefore, the development of
personalized modeling must not only push technical boundaries

but also achieve deeper integration and optimization in terms of
privacy, security, and fairness.

3. Method
This study proposes a collaborative optimization

approach for privacy protection and personalized modeling in
federated recommendation systems. The goal is to improve
recommendation performance and enhance individual
adaptability without sharing data across parties. The method
integrates federated learning architecture with personalized
modeling strategies to deliver differentiated recommendations
while preserving user privacy. First, a Local Interest-guided
Personalized Model aggregation mechanism (LIPM) is
introduced. It guides the federated aggregation process using
user preferences learned locally on each client. This allows the
global model to balance global optimization with local
adaptation. As a result, the model becomes more robust to
heterogeneous user data. Second, a Differential Privacy-driven
Personalized Strategy (DPPS) is designed. It incorporates a
dynamic perturbation mechanism during model updates. This
strategy controls the risk of privacy leakage while maintaining
high-fidelity modeling of individual interest patterns. It
improves the trade-off between recommendation accuracy and
privacy protection. These two innovations are complementary
in both structural design and optimization objectives. Together,
they promote the joint improvement of personalization and
privacy in federated recommendation systems. The model
architecture is shown in Figure 1.

Figure 1. Overall model architecture diagram



3.1 Local Interest-guided Personalized Model

In federated recommendation systems, user data typically
exhibit non-independent and identically distributed (Non-IID)
properties due to varying user behaviors, preferences, and
contexts. These differences lead to strong personalized needs
across clients. Under such conditions, traditional model
aggregation strategies that rely on uniform parameter
averaging often fail to account for individual user
characteristics. As a result, the global model struggles to
generalize effectively across heterogeneous clients. The lack
of personalization in the aggregation process limits the model's
ability to deliver accurate and relevant recommendations,
particularly in environments where user interests are diverse
and dynamic.

To address this limitation, this paper introduces a
personalized model aggregation mechanism guided by local
interest representations. The core idea is to incorporate user-
specific preference signals into the aggregation process,
allowing the global model to better align with local user
characteristics. By leveraging locally learned interest patterns,
the proposed method enhances the adaptability of the
federated model to personalized data distributions. This not
only improves the model's performance on each client but also
preserves the benefits of global collaboration. The module
architecture of the proposed mechanism is illustrated in Figure
2.

Figure 2. LIPM module architecture

In each round of communication, this method not only
uploads local model parameters, but also introduces user
interest representation as an auxiliary modeling signal to
improve the personalized guidance of the aggregation strategy.
Assuming that the local model of the i-th client is i and its

interest embedding is iu , the comprehensive representation
uploaded by the client can be defined as:

),( iii uf  
Where )(f represents the fusion function, which is

used to capture the interaction information between model
parameters and features of interest.

On the server side, in order to balance individual
differences and overall performance in the global model
aggregation process, a weighted aggregation strategy is
adopted, and user interest guidance is embedded in the
construction of aggregation weights. Define the global model
as  , then the update formula is:




 
N

i
ii

t

1

)1( 




j j

i
i ug

ug
))(exp(

))(exp( represents the attention weight

calculated based on interest embedding, and )(g is the
weight generation function, which is used to measure the
influence of each client interest on the global model. This
design enables the aggregation mechanism to adaptively focus
on user preferences that are more valuable to global
performance improvement when facing heterogeneous data.

In addition, in order to further improve the
expressiveness of local interest embedding, an embedding
generation network combining contextual behavior and short-
term history is adopted. Specifically, for user i's interest state
at time t, represented as )(t

iu , its update process can be
modeled as:
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Where )(t
ix is the feature representation of the current

behavior, and GRU represents the gated recurrent unit
structure, which is used to capture dependencies in time series.
This structure can dynamically model the evolution of
interests, thereby providing more expressive preference
guidance signals for personalized aggregation.

Finally, in order to achieve synchronous update and
differentiated adaptation of personalized models, a local fine-
tuning strategy is designed after each round of communication.
After receiving the aggregated model )1( t , the client will
make local adjustments to the model based on its interest
representation iu to make it more suitable for local
preferences. The update strategy is as follows:
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Among them,  is the adjustment coefficient, and iL
is the local personalized loss function, which comprehensively
considers the matching degree between recommendation
accuracy and interest expression. Through the above design,
the local interest guidance mechanism not only improves the



expression of personalized information in the aggregation
stage, but also achieves further alignment between the model
and individual preferences through fine-tuning, thereby
significantly enhancing the personalized ability of the
recommendation system while protecting privacy.

3.2 Differential Privacy-driven Personalized Strategy

In order to further enhance the privacy protection
capability in the federated recommendation system while
maintaining the personalized expression capability of the
model, this paper proposes a differential privacy-driven
personalized strategy (DPPS). This method introduces a
dynamic perturbation mechanism in the process of local model
update and upload to control the risk of information leakage
while maintaining the modeling accuracy of user preference
features. Its module architecture is shown in Figure 3.

Figure 3. DPPS module architecture

Specifically, before uploading the model parameters, the
client protects sensitive information by injecting differential
privacy noise. For the i-th client, its local model parameter
update is represented by )(t

i , and the perturbation version it
uploads is:
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Where ),0( 2IN  represents Gaussian noise with

mean 0 and covariance I2 , and the noise intensity 
controls the degree of privacy protection.

In order to maintain the accuracy of recommendations
while protecting privacy, DPPS introduces a privacy budget
control mechanism to dynamically adjust the noise size
according to the user's behavior activity and historical
disturbance effects. Let the privacy budget be i , then the
standard deviation of the Gaussian mechanism satisfies the
relationship with it:

i
i 

 


Where  is the upper bound of sensitivity, which
indicates the maximum change that model parameters may
have when a single user's data changes. DPPS allocates

personalized privacy budgets based on the activity of each
client, thereby achieving differentiated protection of sensitive
data.

In addition, considering that the noise introduced by
differential privacy will interfere with the model training
process, DPPS designs a personalized adjustment function to
reversely guide the model gradient after adding noise, thereby
enhancing the model's ability to respond to valid signals. Let
the local loss function be )(iL and its gradient be iL .
The guided gradient adjustment is expressed as:

),0(~ 2INLL ii  
 is a regulatory factor, which is used to balance the

learning signal and noise deviation and improve the model's
ability to capture the preferred direction.

Finally, when performing global aggregation on the
server side, DPPS maintains the standard weighted
aggregation framework, but the aggregation weights will
comprehensively consider the impact of noise introduction on
model performance. The global model update is expressed as:
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represents a weighting

strategy based on the inverse of the privacy noise variance,
which makes clients with less noise and higher stability have a
greater impact on the global model, thereby effectively
alleviating performance fluctuations caused by privacy
disturbances. Through the above mechanism, DPPS retains the
modeling ability of local preferences while achieving the
synergistic goal of personalized modeling and privacy control
while realizing the privacy protection of federated learning.

4. Experimental Results
4.1 Dataset

This study uses the real-world dataset MovieLens-1M,
which is widely adopted in the recommendation system
domain for evaluating models and validating algorithms.
MovieLens-1M contains approximately one million user rating
records. It covers around 6,000 users and 4,000 movies. Each
record includes a user ID, movie ID, rating value, and
timestamp. This information reflects long-term user
preferences and behavioral patterns.

The dataset features a wide distribution of user activity
and diverse rating behaviors. It is suitable for studying
recommendation modeling under non-independent and
identically distributed (Non-IID) conditions. It also supports
scenarios involving federated learning and privacy protection.
The historical rating sequences allow time-series modeling,
which helps capture the evolution of user interests.

During data preprocessing, ratings are usually binarized.
For example, ratings of 4 or higher may be treated as positive



feedback. The data are split into training and test sets based on
users, simulating personalized inference tasks in real
recommendation scenarios. With the characteristics of
MovieLens-1M, this study can systematically evaluate the
model's personalized recommendation performance under
privacy-preserving conditions while ensuring data realism.

4.2 Experimental setup

In the experimental setup, we use a federated learning
framework to simulate a scenario where multiple clients
participate in the recommendation task. Each client holds a
distinct subset of users, forming a typical non-independent and
identically distributed data partition. This design reflects a
realistic data silo environment under privacy constraints. The
model is trained locally on each client and aggregated globally
on the server. A differential privacy mechanism is introduced
during training to control the sensitivity of uploaded
information. A personalization strategy based on interest
modeling enhances local adaptability.

We evaluate the approach using the MovieLens-1M
dataset. The model architecture is a multi-layer perceptron
(MLP). Key parameters, including embedding dimension,
learning rate, and privacy budget, are optimized using grid
search. This ensures that each method is compared under its
best configuration. Evaluation metrics include AUC and
NDCG, which measure the model's ranking performance and
the effectiveness of personalized recommendation,
respectively. The main experimental hyperparameter settings
are shown in Table 1.

Table 1: Hyperparameter setting

Parameter Value
Dataset MovieLens-1M
Embedding Dimension 64
Learning Rate 0.001
Batch Size 128
Local Epochs 5
Communication Rounds 50
Privacy Budget {0.5, 1.0, 5.0}
Optimizer Adam

4.3 Experimental Results

1) Comparative experimental results

First, this paper gives the comparative experimental results
with other models. The experimental results are shown in Table
2.

Table 2: Comparative experimental results
Method NDCG@10 Recall@10 Precision@10
FedRec[22] 0.410 0.532 0.326
FedMF[23] 0.428 0.548 0.339
FedNCF[24] 0.441 0.562 0.351
DP-FedAvg[25] 0.417 0.529 0.323
PFedMe[26] 0.453 0.571 0.357
Ours 0.481 0.595 0.374

As shown in the table, the proposed method outperforms
existing mainstream federated recommendation approaches
across all three evaluation metrics: NDCG@10, Recall@10,
and Precision@10. Specifically, NDCG@10 improves from
0.410 in FedRec to 0.481. This indicates that the model has a
stronger ability to rank items that users are interested in. The
improvement in this metric is especially important, as ranking
relevant items higher directly affects user experience and
satisfaction in real-world recommendation systems.

From the perspective of Recall@10, the proposed method
achieves a recall of 0.595. This is significantly higher than that
of advanced methods such as FedNCF (0.562) and pFedMe
(0.571). This result suggests that the method can capture a
larger portion of truly relevant items within a limited
recommendation list. It shows stronger adaptability to user
preference diversity and improves the comprehensiveness of
recommendations. This is particularly valuable in federated
learning settings, where data heterogeneity is common. A
model's ability to provide personalized recommendations is
crucial for its effectiveness in such environments.

For the Precision@10 metric, the proposed method also
demonstrates higher accuracy. It increases from 0.323 in DP-
FedAvg to 0.374. This means that the top 10 items in the
recommendation list include more truly relevant content. It
reduces the presence of irrelevant items and enhances user trust
and efficiency in interacting with the recommendations. When
combined with the previous two metrics, it is clear that the
method achieves a balance between recommendation breadth
and accuracy. This is a strength that many existing approaches
struggle to maintain.

Taken together, the performance on all three metrics shows
that the proposed method effectively addresses the performance
degradation commonly seen in federated recommendation
systems. It achieves this under privacy-preserving conditions
by combining local interest guidance with a differential privacy
strategy. The method improves the model's ability to capture
personalized preferences while ensuring data security. This
confirms its potential value and applicability in practical
scenarios.

2) Ablation Experiment Results

Secondly, this paper gives the ablation experiment results,
as shown in Table 3.

Table 3: Ablation Experiment Results
Method NDCG@10 Recall@10 Precision@10
BaseLine 0.436 0.556 0.344
+LIPM 0.462 0.578 0.361
+DPPS 0.451 0.567 0.353
Ours 0.481 0.595 0.374

As shown in Table 3, introducing the LIPM and DPPS
modules to the baseline model leads to clear improvements in
recommendation performance. This confirms the effectiveness
of each individual module. The baseline model achieves 0.436
in NDCG@10, 0.556 in Recall@10, and 0.344 in



Precision@10. These results serve as reference points,
reflecting the performance without personalized aggregation or
privacy protection mechanisms.

When only the Local Interest-guided Personalized Model
aggregation module (+LIPM) is added, all three metrics
improve. In particular, NDCG@10 increases to 0.462. This
indicates that the model captures user ranking preferences more
effectively. LIPM guides parameter aggregation based on user
interests. This helps the global model better adapt to the
preference differences across clients, thereby enhancing
personalized representation and recommendation relevance.

Adding only the Differential Privacy-driven Personalized
Strategy (+DPPS) also improves performance. The gains are
especially noticeable in Recall@10 and Precision@10. This
shows that DPPS preserves strong user preference modeling
ability while protecting privacy. By dynamically adjusting
noise intensity and gradient guidance, the module reduces the

negative impact of privacy mechanisms on model performance.
It helps maintain a balance between recommendation accuracy
and privacy security.

The full model (Ours), which integrates both LIPM and
DPPS, achieves the best results across all metrics. NDCG@10
reaches 0.481, Recall@10 reaches 0.595, and Precision@10
increases to 0.374. These results further demonstrate the
synergistic effect of the two modules. They confirm that the
proposed collaborative optimization strategy not only enhances
personalized recommendation quality but also ensures robust
user privacy protection.

3) The impact of non-IID degree on recommendation
performance in federated learning

This paper also gives the research results on the impact of
non-IID degree on recommendation performance in federated
learning, as shown in Figure 4.

Figure 4. The impact of non-IID degree on recommendation performance in federated learning

As shown in Figure 4, the performance of the federated
recommendation system declines noticeably across evaluation
metrics as the degree of data non-independence and non-
identical distribution (Non-IID) increases. For NDCG@10, the
system performs best under the Low Non-IID setting, reaching
about 0.48. This value drops to around 0.44 under the High
Non-IID condition. This indicates that greater interest
divergence among users negatively affects the accuracy of
recommendation ranking.

In terms of Recall@10, the recall rate is approximately 0.60
under Low Non-IID, but decreases to around 0.54 under High
Non-IID. This suggests that as client data become more diverse,
the system finds it harder to capture content that users are truly
interested in. The result highlights the global model's limited
adaptability when facing inconsistent user preferences.

Precision@10 shows a similar pattern. It decreases from
0.37 under Low Non-IID to about 0.33 under High Non-IID.
This drop reflects a reduced presence of relevant items in the
recommendation list. Even with a fixed list length, the system's
ability to accurately recommend related content is weakened by

data heterogeneity, which degrades the overall user experience
and precision.

These results demonstrate that Non-IID characteristics of
data have a significant impact on recommendation performance
in federated learning environments. Without effective
personalization mechanisms, the model struggles to maintain
stable recommendation quality when exposed to highly
heterogeneous data. Therefore, it is essential to design
strategies with strong personalization adaptability for federated
recommendation systems.

4) The impact of federation aggregation rounds on
personalized recommendation effects

This paper also gives the impact of the number of federated
aggregation rounds on the personalized recommendation effect,
and the experimental results are shown in Figure 5.

Figure 5 illustrates the impact of the number of federated
aggregation rounds on personalized recommendation
performance. As the number of rounds increases, the model
shows steady improvements in NDCG@10, Recall@10, and



Precision@10. This indicates that more communication rounds
help the model better integrate personalized information from
clients, thereby enhancing the expressiveness and
generalization of the global model.

Figure 5. The impact of federation aggregation rounds on
personalized recommendation effects

For Recall@10, the curve rises quickly and then saturates.
This suggests that the model can significantly improve recall
with relatively few rounds, but the performance gain becomes
marginal after a certain point. It indicates that federated

learning captures user preferences effectively during early
aggregation, while further rounds yield limited benefit.

The increase in NDCG@10 is more gradual and consistent.
The improvement is stable across iterations. This means that
ranking quality continues to improve as the model is trained
further. The trend shows that sufficient communication rounds
are important for boosting the relevance and accuracy of
ranked recommendation lists, especially when aiming for high-
quality personalized results.

Precision@10 also shows a slow but steady upward trend.
This further confirms that recommendation accuracy improves
with more rounds of communication. Overall, the results
demonstrate the critical role of aggregation rounds in federated
personalized recommendation. Properly tuning the
communication frequency helps achieve a balance between
efficiency and performance.

5) Analysis of the interference of noise injection
mechanism on user preference modeling ability

This paper also presents the experimental results of the
interference analysis of the noise injection mechanism on the
user preference modeling ability, as shown in Figure 6.

Figure 6. Analysis of the interference of noise injection mechanism on user preference modeling ability

Figure 6 shows the impact of noise injection on the model's
ability to capture user preferences. As the standard deviation (σ)
of the noise increases, all three main evaluation metrics—
NDCG@10, Recall@10, and Precision@10—show a
downward trend. This indicates that stronger noise introduces
significant interference in personalized recommendation
performance. At low noise levels, the model still maintains
good ranking and recommendation quality. However, as the
noise becomes stronger, performance degradation becomes
more pronounced.

The NDCG@10 curve decreases smoothly, indicating that
ranking performance is highly sensitive to noise. Since ranking
metrics depend on fine-grained modeling of user preferences,
Gaussian noise disrupts the model's ability to capture detailed
interests. This results in high-quality items being misranked or
overlooked, which affects the overall recommendation
experience.

Recall@10 drops more sharply. This suggests that under
stronger noise, the model fails to effectively retrieve items that
users are truly interested in. Noise injection reduces the model's
ability to identify highly relevant content, limiting the coverage
of the recommendation list. This presents a significant risk for
applications where high recall is essential.

The Precision@10 curve also declines gradually, showing
that stronger noise directly harms recommendation accuracy.
With a fixed recommendation list length, noisy predictions
increase the proportion of irrelevant items, which lowers
precision. Overall, this experiment reveals that while
differential privacy mechanisms help protect user data, they
may also degrade model performance. It highlights the need to
carefully control noise intensity to balance privacy protection
and personalized modeling.



6) Loss function changes with epoch

Finally, this paper presents a graph that illustrates the
change in the loss function over training epochs, as shown in
Figure 7. The purpose of this visualization is to provide a clear
understanding of the model's optimization process during
training. By tracking the loss value across iterations, it
becomes possible to evaluate how effectively the model
minimizes error over time.

This graph serves as an important indicator of training
dynamics, including convergence behavior and model stability.
Observing the trend of the loss curve helps determine whether
the model is learning efficiently and whether it has reached a
stable state. It also provides insight into the quality of the
training process and the appropriateness of the model
configuration

Figure 7. Loss function changes with epoch

As shown in Figure 7, the training loss shows a stable
downward trend over 200 epochs. This indicates that the model
continuously updates its parameters to minimize error during
the iterative optimization process. In the early stages, the loss
decreases rapidly. This reflects the model's quick adaptation to
global patterns and correction of initial prediction errors, which
is a common characteristic in deep learning training.

In the middle and later stages of training, the loss curve
gradually flattens. As the loss approaches zero, the model is
considered to have reached a good level of convergence. After
around 150 epochs, the changes in loss become minimal. This
suggests that further learning has limited impact on reducing
overall error, marking the beginning of the convergence phase.
It demonstrates the training process is both stable and
convergent. Moreover, the curve does not show significant
oscillations or rebounds. This implies that the training process
does not suffer from overfitting or gradient instability. Such
behavior typically reflects a well-designed model structure and
properly configured optimizer settings. It also indicates that the
model has strong potential to maintain good performance on
test or real-world data. Overall, the loss curve confirms that the
training process is efficient and well-converged.

5. Conclusion
This paper focuses on the conflict between privacy

protection and personalized modeling in federated

recommendation systems. It proposes a collaborative
optimization framework that integrates a local interest-guided
personalized aggregation mechanism and a differential privacy-
driven update strategy. This enhances its modeling capability in
non-independent and identically distributed environments.
Experimental results confirm the superiority of the proposed
method across multiple evaluation metrics, demonstrating its
ability to balance personalization and privacy protection. From
a technical perspective, this study addresses limitations of
existing methods, such as insufficient personalization or severe
performance degradation due to privacy interference. It does so
by introducing interest-driven aggregation and privacy-
adaptive regulation within a federated learning architecture.
The two modules complement each other, enabling the model
to maintain stable recommendation performance in
heterogeneous data scenarios. The approach avoids the
shortcomings of unified modeling, which ignores user diversity,
and overcomes information loss caused by noise injection. This
structured optimization strategy provides a replicable and
scalable theoretical foundation for future federated
recommendation system design.

In terms of practical application, the proposed method can
be widely applied in privacy-sensitive domains with strong
personalization demands, such as healthcare, financial risk
control, and smart retail. By delivering high-quality
recommendations without sharing raw data, related systems
can offer more intelligent and trustworthy services while
remaining compliant with data regulations. Furthermore, the
framework's generality offers insights for other multi-party
collaborative modeling tasks and shows potential for cross-
domain adoption. Future research may further explore robust
modeling under complex conditions such as heterogeneous
devices, dynamic communication frequencies, and cross-
platform collaboration. It may also consider emerging
challenges in federated recommendation, including fairness and
interpretability. As privacy-preserving technologies advance
and real-world deployments expand, building efficient, secure,
and personalized recommendation systems will become a
critical direction for intelligent systems. This study represents a
key step toward that goal.
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