
Journal of Computer Technology and Software

ISSN:2998-2383

Vol. 3, No. 8, 2024

A Meta-Learning Framework for Cross-Service Elastic Scaling in
Cloud Environments
Tengda Tang
University of Michigan, Ann Arbor, USA
ttengda@umich.edu

Abstract: This paper addresses the challenge of limited generalization and adaptability in elastic scaling strategies for service
instances under cloud computing environments. It proposes a meta-learning-based framework for cross-service scaling strategy
modeling. The framework integrates a service-aware task construction mechanism with a dual-stage strategy prediction model. By
extracting transferable knowledge through multi-task learning, the method enables fast adaptation and high-accuracy prediction
for new service scenarios. In the task construction phase, the framework introduces service context representation and structural
information. This leads to meta-task partitioning with stronger semantic consistency, improving both learning stability and model
generalization. In the strategy prediction phase, a dual-stage model architecture is designed. It combines meta-initialized
parameters with local fine-tuning. By fusing global coarse prediction with local refinement, the model generates scaling strategies
that balance global knowledge transfer with service-specific modeling. Experiments are conducted on a real-world cloud service
dataset. The model is systematically evaluated across multiple dimensions, including accuracy, robustness, and adaptability.
Results show that the proposed method outperforms mainstream approaches across key metrics and demonstrates strong
transferability. In addition, ablation studies and sensitivity analyses confirm the individual contributions of each module to
strategy performance. These findings highlight the effectiveness and practicality of the method in complex service scheduling
scenarios.

Keywords: Elastic scaling, meta-learning, service modeling, and policy prediction

1. Introduction
With the rapid development of cloud computing and

microservice architecture, dynamic and elastic scaling of
service instances has become a key approach to ensuring high
availability and efficient resource utilization[1,2,3]. Modern
distributed systems are often composed of a large number of
microservices. These services need to scale in or out
dynamically based on changing workloads to handle traffic
peaks and resource pressure at different times. Traditional
scaling strategies mostly rely on static thresholds or rule-based
engines. While effective in simple scenarios, they often show
poor adaptability and delayed responses in complex production
environments. Especially in the presence of highly
heterogeneous resource profiles and interaction patterns among
services, manual tuning and rule design become increasingly
impractical. This calls for smarter and more generalizable
modeling methods.

In recent years, scaling decisions based on supervised
learning have attracted growing interest. These methods train
models on historical metrics to predict future workload trends
or determine whether scaling is needed. Although they can
perform well in specific services, they heavily rely on training
data and show limited generalization. When deployment
conditions change or a new service is introduced, the model
usually needs retraining. This leads to substantial overhead in
data collection and manual adjustment, reducing system
maintainability and scalability. Therefore, enabling fast model

generalization across different services has become a critical
challenge in intelligent scaling research[4,5].

Against this backdrop, meta-learning offers a promising
solution. Meta-learning focuses on “ learning to learn” by
extracting shared knowledge structures from multiple tasks.
This enables models to adapt to new tasks with very limited
data[6]. Applying meta-learning to service scaling strategy
modeling can significantly enhance cross-service adaptability.
By training on multiple existing services, the model can learn
key features that influence scaling behavior. It can then
generalize to new services and produce effective scaling
decisions with minimal data, reducing tuning costs and
improving overall efficiency[7].

Moreover, elastic scaling is not only a matter of resource
management. It is closely tied to system performance and user
experience. In high-concurrency scenarios, failure to scale out
in time may cause delays or request loss. On the other hand,
excessive scaling leads to resource waste and increased costs.
A generalizable scaling strategy framework must balance
responsiveness and precision[8]. It should support diverse
service patterns while ensuring robust resource control. This is
particularly important in complex environments involving
multi-tenancy, cross-cluster deployments, and geographically
distributed systems. In such settings, a generalizable modeling
framework can greatly enhance automation and intelligent
management. Building a cross-service scaling strategy
framework based on meta-learning holds significant theoretical

and practical value[9,10]. It addresses the need for transferable
learning in intelligent systems and promotes deeper integration
between AI and system engineering. At the same time, it
introduces a new paradigm for intelligent resource scheduling
in large-scale microservice environments. It provides strong
support for improving elasticity and resource efficiency in
cloud-native architectures. As cloud platforms continue to scale,
intelligent control methods with self-adaptive and self-learning
capabilities will play an increasingly central role.

2. Related work
2.1 Supervised Learning

Supervised learning methods have been widely used in
the study of elastic scaling for service instances due to their
strong predictive performance[11]. Typical approaches collect
time series data such as resource usage, request volume, and
response latency. These data are used to train classifiers or
regression models to determine whether to trigger scaling
operations. Such methods can effectively extract patterns from
historical data[12,13]. Compared with static threshold
strategies, they offer better adaptability and generalization.
Common models include decision trees, support vector
machines, and multilayer perceptrons. These models have
shown good prediction accuracy in real systems and are
suitable for scenarios with regular load fluctuations[14].

With the progress of deep learning, researchers have
introduced more complex model architectures to capture
nonlinear patterns in resource usage. For example, long short-
term memory (LSTM) networks are widely used to model
temporal dependencies in system metrics. They can predict
future workloads in advance and enable proactive scaling
actions. Convolutional neural networks (CNNs) are also used
to capture short-term fluctuation features. In some
microservice architectures, hybrid models combining CNN
and LSTM have shown promising results. These deep
learning-based supervised methods not only improve
prediction accuracy but also expand the range of model
choices for elastic scheduling[15].

Nevertheless, supervised learning still faces limitations in
practical deployment, especially when there are large
differences between services. Each service has its own
workload pattern, resource consumption profile, and
invocation behavior. As a result, traditional supervised models
often perform well only in specific services. Their
performance drops significantly when applied to new ones.
Enhancing the adaptability of models across services and
reducing the cost of data collection and retraining for each
deployment has become a key research issue. This also raises
new challenges for designing more general and efficient
strategy modeling methods.

2.2 Meta-Learning

In modeling elastic scaling strategies for service instances,
traditional supervised learning methods often show limited
generalization when facing service heterogeneity and dynamic
environments[16,17,18]. To address this challenge, meta-

learning has emerged as a promising paradigm to enhance
model transferability. Its core idea is to learn a set of general
initialization parameters or meta-knowledge across multiple
tasks. This enables the model to adapt quickly to new tasks
with only a few samples, significantly reducing training cost
and time[19,20].

In elastic scaling tasks, different services may vary
significantly in resource usage, workload fluctuations, and
dependency structures[21,22,23]. This makes direct model
transfer difficult. Meta-learning methods can extract shared
features that influence scaling decisions across different
services. These features help the model infer effective
strategies for new services, improving generality and
robustness. For example, with task-level training mechanisms,
the model can capture both the behavioral patterns of
individual services and the structural similarities among them.
This provides a theoretical and methodological foundation for
cross-service modeling[24].

In addition, integrating meta-learning with deep learning
models offers a new path toward building scalable and
transferable elastic management systems[25]. Whether through
model-agnostic meta-learning approaches that optimize
parameter spaces, or context-based embedding networks that
capture dynamic features of service environments, meta-
learning demonstrates strong adaptability and generalization.
As cloud computing systems grow in complexity, modeling
mechanisms with fast generalization capabilities will play an
increasingly important role in advancing intelligent elastic
scheduling.

This integration not only enhances the learning efficiency
of resource management strategies but also enables rapid
adaptation to unseen service behaviors with minimal overhead.
By decoupling system-specific logic from core learning
mechanisms, meta-learning empowers models to generalize
across diverse workloads and heterogeneous deployment
contexts. Moreover, embedding-based methods allow these
systems to continuously incorporate temporal patterns,
workload dynamics, and structural dependencies of services,
leading to more refined and context-aware decision-making
processes[26].

In practical terms, this hybrid approach ensures that elastic
management frameworks can maintain high responsiveness
under workload fluctuations, while reducing the need for
frequent manual tuning or retraining. It also creates a
foundation for automating elastic scaling decisions in large-
scale, multi-tenant cloud environments where service-level
objectives must be maintained with high precision. The
resulting systems are more robust, more flexible, and more
intelligent in responding to the complex demands of modern
distributed infrastructures[27,28].

Ultimately, as the scale and diversity of cloud-native
applications continue to expand, meta-learning-infused
architectures are expected to become a fundamental component
of next-generation elastic management solutions. Their ability
to leverage prior knowledge, adapt rapidly, and generalize
effectively positions them as a promising direction for both
academic research and industry adoption in cloud automation
and intelligent system optimization.

3. Method
This study addresses the challenge of generalizable

modeling in elastic scaling decisions for service instances. It
proposes a meta-learning-based framework for cross-service
scaling strategy modeling. The method shows clear advantages
in improving the adaptability to heterogeneous services and
enhancing the intelligence of scaling decisions. Specifically,
the first contribution is a Service-Aware Task Construction
Mechanism(SATCM). It builds tasks by incorporating runtime
contextual features of services, such as resource configurations

and call chain topologies. This makes the meta-learning
process more aligned with the dynamic behavior patterns of
real services. The second contribution is a Dual-Stage Strategy
Prediction Model(DSSPM) for fast adaptation. It designs a
policy generation network that combines global initialization
with local fine-tuning. This enables quick transfer and high-
accuracy prediction with few samples when facing new
services. Together, these two innovations form a generalizable,
low-cost, and highly responsive modeling system for
intelligent scaling strategies. The model architecture is shown
in Figure 1.

Figure 1. Overall model architecture diagram

3.1 SATCM
In elastic scaling strategy modeling, different service

instances have significant heterogeneity in terms of resource
usage characteristics, load fluctuation patterns, call chain
structures, etc., which makes it difficult for a unified modeling
task design to cover all service types, thus affecting the
effectiveness and generalization ability of the meta-learning
process. To solve this problem, this study proposes a service-
aware task construction mechanism (SATCM), which
introduces service context semantics for task division and
feature extraction, so that each meta-task has stronger service
adaptability and policy consistency. Its module architecture is
shown in Figure 2. Figure 2. SATCM module architecture

The core idea of SATCM is to abstract the operating
environment of each service instance into a context vector ic ,
which is encoded by static configuration parameters (such as
the number of service replicas and resource limits) and
structural features (such as dependency depth and call fan-out).

Suppose there is a service set },...,,{ 21 nSSSS , and each

service iS corresponds to a context representation:

)(ienci Sfc
Where encf is the context encoding function, which can

be represented by MLP or embedding layer. Based on the
context representation, SATCM clusters similar services into
meta-task clusters, using K-Means or cosine similarity-based
similarity measurement:

||||||||
),(

ji

ji
ji cc

cc
ccsim

This similarity is used as a metric for task division to
construct a more consistent meta-training task set

},...,,{ 21 kTTTT .

In each meta-task kT , we further construct supervised

training sample pairs),(tt yx , where tx represents the
service operation status within a certain time window,
including the historical load sequence],...,[twtt III and

the resource usage vector tr , which is in the following form:
]||||[ittt crIx

ty is the actual scaling behavior (expansion, reduction,
or unchanged) at that time point, and participates in the meta-
training phase as a supervisory signal. By introducing context

ic into the input space, SATCM achieves a strong coupling
between task input and service structure, thereby ensuring
semantic consistency between tasks.

In addition, to improve the distinguishability of task
representation, SATCM introduces a context-based task
embedding mechanism to map each task kT to the
embedding space:

)}({
ki TSitaskk cge

taskg can be constructed based on attention aggregation
or graph neural encoding modules, which facilitates the
dynamic perception of semantic differences between tasks in
the subsequent meta-learning stage. Through the above
mechanism, SATCM not only improves the structural
rationality of task construction, but also lays a more stable
training foundation for the learning of global initialization
parameters.

In summary, SATCM, based on the heterogeneity of
original service instances, effectively alleviates the
performance degradation problem caused by "excessive
heterogeneity between tasks" in meta-task construction by
introducing contextual information modeling and semantic
consistency optimization. It is the key technical support for
this study in intelligent modeling of service scheduling.

3.2 DSSPM

To further improve the accuracy and adaptability of
scaling strategy prediction in cross-service scenarios, this
study designs a Dual-Stage Strategy Prediction Model
(DSSPM). The model is built on meta-learned initialization
parameters and generates strategies through a two-stage
structure of coarse adaptation followed by fine adaptation. It
achieves both generalization over known task distributions and
rapid adaptation to local features of new services. This enables
precise prediction of scaling behavior. DSSPM consists of two
sub-modules: the Global Init Predictor and the Context-Aware
Refiner. These modules work together to perform dynamic
inference of service scaling strategies. The model architecture
is shown in Figure 3.

Figure 3. DSSPM module architecture

In the first stage, the model receives the initialization
parameters 0 obtained by Meta-Learning training, builds a

basic network)(txf for scaling classification tasks, inputs
the service state representation C at time step t, and outputs the
probability distribution of policy decisions. The state vector is
defined as follows:

]||||[ittt crIx

tI represents the historical load sequence, tr is the

current resource utilization vector, and ic is the service
context embedding. The global prediction stage outputs a
three-category decision probability 3)()(' Rxfy t

g
t ,

corresponding to "scale up", "scale down" and "no change".

In the second stage, the fine-tuning module is introduced
to quickly update the global model parameters through a small
number of local samples support

iD to obtain the context-

adapted parameters i' . The fine-tuning process is
implemented using gradient descent:

)),((' support0 yxfLi

The updated model f receives the same input tx and

outputs a refined policy prediction)(')(
t

l
t xfy . The final

prediction result is a weighted fusion of the outputs of the two
stages:

)()(')1('' l
t

g
tt yyy

]1,0[controls the contribution weight of coarse
prediction and fine-tuning prediction. The system can
adaptively learn this parameter according to the training stage
to enhance the robustness under different service
characteristics.

The training goal of DSSPM is to minimize the joint
classification loss of the global and local stages. The
comprehensive loss function is as follows:

localglobaltotal LLL)1(

queryDyxquery

global yxfCE
D

L
),(

)),((
||

1
0

query

i
Dyxquery

local yxfCE
D

L
),(

')),((
||

1

)(CE represents the cross entropy loss, and is the
weight adjustment factor of the two-stage loss. Through the
two-stage optimization structure, DSSPM can quickly
perceive service-specific behaviors based on global learning of
general policy knowledge, and achieve effective policy
migration and local optimization for new tasks.

In general, DSSPM provides a new policy prediction
paradigm that combines initialization generalization with local
customization, solving the common contradiction between
"overfitting a single service" and "lack of generalization
ability" in elastic policy learning. It not only improves the
accuracy of scaling decisions, but also significantly shortens
the adaptation time when the model is deployed to a new
service, reflecting the practical value and engineering
feasibility of AI algorithm design in system intelligent
scheduling tasks.

4. Experimental Results
4.1 Dataset

This study uses the Azure Functions Traces Dataset as
the primary source of experimental data. The dataset consists
of execution logs from real cloud-based function services. It
covers scheduling, resource usage, and state transitions of
millions of function instances across different time periods.
The data include key metrics such as start time, completion

time, memory usage, CPU utilization, and concurrent request
count. These metrics reflect the dynamic resource usage and
workload patterns of microservices during real operations.

The dataset has two main advantages. It offers high-
frequency sampling and wide coverage of service types. It
includes function instances from various business scenarios,
enabling the construction of complex service context features
and multi-dimensional time series inputs. During
preprocessing, we group services based on function names and
deployment environments. We extract key fields to build
service context representations and generate sliding-window
input sequences with corresponding scaling labels.

This dataset allows us to simulate the scaling decision
process in real-world cloud service environments. It provides
diverse service task samples for training the meta-learning
model. Its broad coverage and rich service diversity offer
strong support for studying cross-service generalization. These
features also enhance the engineering relevance and practical
value of the experimental results.

4.2 Experimental setup

In the experimental setting, we regard the service scaling
modeling task as a multi-task supervised classification
problem, build independent tasks for each service, and use
time series windows as the basic input unit. The input of the
model includes the load sequence of several past time steps,
resource utilization, and service context vector, and the output
is a three-category label (expanded, reduced, unchanged). All
models are built under a unified data preprocessing process.
The dataset is divided into training set, validation set, and test
set according to the service to ensure that the test task does not
overlap with the training task to truly simulate the
generalization ability of cross-service migration.

The experiment was conducted in a server environment
with 4 V100 GPUs. PyTorch was used to implement all model
frameworks. Adam was selected as the optimizer, and the
initial learning rate was set to 0.001. The meta-learning part
uses the 5-way 5-shot setting to build the support set and
query set, the number of gradient update steps is set to 3 steps,
and the parameter in the fusion stage is selected by grid
search on the validation set. All experimental results are based
on the stable results of averaging multiple runs to ensure the
reliability and consistency of the evaluation.

4.3 Experimental Results
1) Loss function changes with epoch

This paper first gives a graph of the change of the loss
function with epoch during the training process, as shown in
Figure 4.

Figure 4. Loss function changes with epoch
As shown in the figure, both the training loss and

validation loss exhibit a steady downward trend throughout the
training process. This indicates that the model effectively fits
the data distribution as learning progresses. During the first 50
epochs, both curves decrease rapidly. The training loss drops
from an initial value of around 30 to below 10. This suggests
that the model quickly captures key feature information and
achieves rough parameter convergence at an early stage.

After around 75 epochs, the training enters the mid-to-
late phase. Both training and validation losses begin to
stabilize and gradually converge to around 2. This shows that
the model has essentially completed the learning task, with
later training focusing on fine-tuning of detailed features.
During this stage, the training loss is slightly lower than the

validation loss. This reflects a typical generalization gap, but
the difference remains small, and there is no clear sign of
overfitting.

Overall, these results confirm that the proposed model
demonstrates good stability and generalization during training.
The consistent decrease of validation and training loss
indicates that the model performs well not only on the training
data but also on unseen service tasks. This provides a solid
foundation for subsequent strategy prediction.
2) Comparative experimental results

In this section, this paper gives the experimental results
of the algorithm under different models and different settings.
The experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method Acc(%) F1-Score Precision Recall AUC Macro-F1
Ours (SATCM + DSSPM) 93.7 0.916 0.927 0.908 0.952 0.914
ProtoNet + LSTM[29] 88.9 0.864 0.871 0.856 0.912 0.859
MAML + MLP[30] 89.5 0.873 0.888 0.860 0.918 0.870
Meta-STN[31] 91.1 0.889 0.902 0.877 0.930 0.883
TAML (Task-Agnostic Meta-Learn)[32] 87.8 0.851 0.862 0.840 0.906 0.847
Reptile + TemporalConvNet[33] 90.2 0.875 0.881 0.869 0.921 0.872
FedMeta (centralized version)[34] 89.3 0.866 0.874 0.858 0.915 0.864

The experimental results in the table show that the proposed
method (SATCM + DSSPM) achieves the best performance
across all evaluation metrics. This demonstrates its strong
adaptability and generalization ability in elastic scaling strategy
modeling. In particular, it reaches 93.7% in Accuracy, 0.916 in
F1-Score, and 0.952 in AUC. These results are significantly
better than those of mainstream meta-learning and time series
prediction models. This indicates that the proposed approach
delivers more stable and accurate decisions across different
scaling scenarios.

Compared with baseline methods, models such as MAML
+ MLP and ProtoNet + LSTM show some generalization
ability through meta-learning. However, they lack precision in
modeling service context and fine-grained temporal dynamics.

As a result, their Precision and Recall scores are relatively
low. Reptile + TemporalConvNet performs better in capturing
time-based features. Yet, it lacks structured modeling of
contextual information during task transfer, which limits its
overall generalization.

Meta-STN, as a structure-aware model, achieves results
close to our method in Recall and AUC. It shows good intra-
task generalization but fails to incorporate service context
semantics. This leads to accuracy degradation when switching
between tasks. Federated approaches like FedMeta have
distributed advantages in decentralized learning. However, in
this study's centralized setting, their modeling accuracy and
fine control remain insufficient.

Overall, the proposed method combines service-aware task
construction with a dual-stage prediction model. It maintains
strong generalization while capturing service-specific scaling
behavior in detail. This makes it particularly suitable for real
production environments with a large number of heterogeneous
services. It offers a practical and effective solution for
intelligent resource management in cloud-native systems.

3) Ablation experiment

This paper also conducted ablation experiments, and the
experimental results are shown in Table 2.

Table 2: Ablation Experiment Results

Method Acc(%) F1-Score Precision Recall AUC Macro-F1
Ours (SATCM + DSSPM) 93.7 0.916 0.927 0.908 0.952 0.914
w/o SATCM (No Task Clustering) 90.5 0.879 0.887 0.870 0.923 0.874
w/o DSSPM (No Dual-Stage) 89.1 0.865 0.876 0.853 0.916 0.861
w/o Context Vector in Input 88.3 0.853 0.867 0.840 0.911 0.849
w/o Fine-Tuning Stage 87.6 0.844 0.858 0.831 0.903 0.840
Only Single-Stage Prediction (No Fusion) 88.9 0.861 0.873 0.850 0.908 0.857

The ablation study results in the table clearly show that the
complete model (SATCM + DSSPM) achieves the best
performance across all metrics. This confirms the synergistic
effect of the two core modules within the overall framework.
When the task construction mechanism SATCM is removed,
both accuracy and F1 score drop significantly. This indicates
that service-context-driven task partitioning plays a critical role
in improving task consistency and training stability. Simple
random task division fails to effectively capture structural
similarities across services.

When the dual-stage prediction module DSSPM is removed,
the model can only make decisions based on a single-stage
output. This leads to reduced generalization and lower
prediction accuracy. The results suggest that the dual-stage
structure provides more flexible adaptation to new service tasks.
It maintains generalization from global knowledge while using
fine-tuning to capture local service features. This combination
significantly enhances the accuracy and robustness of strategy
prediction.

Furthermore, removing the service context vector from the
input and relying only on resource and workload data leads to a

noticeable performance drop. This shows that structural and
contextual information provides important decision support
during prediction. It helps the model distinguish different
service behaviors under similar load conditions, allowing for
more targeted scaling decisions.

Finally, when the fine-tuning stage is removed or the fusion
strategy is not applied, and the prediction is made using only
global initialization or a single output, the model still maintains
some accuracy. However, generalization and recall
performance both decline. This shows that local adaptation and
the fusion mechanism play key roles in maintaining diversity
and consistency in strategy decisions. Overall, the results
validate the individual value of each module and the
effectiveness of the complete system, providing strong support
for the model design.

4) Supports sensitivity experiments on adaptation
performance due to changes in set size

Furthermore, this paper also presents a sensitivity
experiment on the adaptation performance to changes in the
support set size, and the experimental results are shown in
Figure 5.

Figure 5. Supports sensitivity experiments on adaptation performance due to changes in set size

As shown in Figure 5, the size of the support set has a
significant impact on the model's adaptability. As the number
of support samples increases from 1-shot to 10-shot, the model
shows consistent improvement across all metrics, including
Accuracy, F1-Score, AUC, and Macro-F1. This result indicates
that in a meta-learning framework, more support samples
provide richer task priors. This helps the model better capture
local characteristics of services and improves the accuracy of
strategy prediction.

The performance gain is especially notable in the transition
from 1-shot to 3-shot. Multiple metrics increase sharply,
showing that even a few additional samples can significantly
enhance the model's adaptability. During this phase, the model
shifts from an initial general state to a more task-specific state.
This reflects the high sensitivity of meta-learning algorithms to
limited information and validates the effectiveness of the task
construction mechanism and parameter initialization strategy.

When the support set increases further to 5-shot and 10-shot,
performance continues to improve but begins to converge. This
suggests that once sufficient contextual information is absorbed,
the model can make stable predictions. The convergence trend
is expected and shows that the model is both stable and robust.
It does not suffer from overfitting as the data size grows.

Overall, this experiment confirms the proposed method's
strong adaptability under limited sample conditions. It also
highlights the support set size as a key tuning factor for
optimizing model performance in real-world deployments.
These findings further support the design choice of using meta-
learning as the core framework in this study.

5) Experiment on the impact of service type heterogeneity
on strategy prediction accuracy

Furthermore, this paper presents an experiment on the
impact of service type heterogeneity on strategy prediction
accuracy, and the experimental results are shown in Figure 6.

Figure 6. Experiment on the impact of service type
heterogeneity on strategy prediction accuracy

As shown in Figure 6, there are clear differences in
prediction accuracy across different service types. This
confirms the significant impact of service heterogeneity on
model performance. Overall, services of the Stateless API and
Cache Layer types achieve the highest accuracy, both
exceeding 93 percent. These services tend to have stable
runtime behavior and relatively consistent workload patterns,

which help the model learn highly consistent feature
distributions during training.

In contrast, services like ML Inference and Batch Job show
lower accuracy. This may be due to their more volatile resource
usage patterns and rapid state changes. These characteristics
make it difficult for the model to capture key triggers for
scaling decisions. Such services often involve uneven loads and
sudden computational peaks, which place higher demands on
the model's temporal perception and contextual understanding.

Services like Streaming and Queue Handler exhibit
moderate prediction performance. Although they have periodic
or task-driven features, their behavioral patterns are more
complex than traditional web services. This suggests that the
current model can generalize to some extent but still requires
optimization based on service semantics. DB Proxy services
show slightly lower accuracy as well, possibly due to strong
dependencies on external service interactions.

This analysis shows that the predictability of scaling
strategies is directly influenced by the service's operational
logic, call structure, and resource usage characteristics.
Therefore, in real-world deployments, it is important to
consider the impact of service heterogeneity on model
performance. Specialized modeling or multi-model integration
mechanisms should be introduced for critical service types to
improve the stability and applicability of strategy prediction.

6) Test of the impact of time series feature truncation
length on model performance

Finally, this paper also presents a test on the impact of the
time series feature truncation length on the model performance,
and the experimental results are shown in Figure 7.

The experimental results in Figure 7 show that the
truncation length of temporal features has a significant impact
on model performance. When the truncation length is short
(e.g., 5 or 10), the model struggles to capture the full dynamic
patterns of resource usage and workload fluctuations. As a
result, performance on metrics such as Accuracy, F1-Score,
and AUC is relatively low. This suggests that insufficient
contextual information limits the accuracy of strategy
prediction.

When the truncation length increases to 20, all metrics
reach their peak values. The model achieves optimal
performance at this length. This indicates that the window
captures representative features of historical behavior. It
provides enough contextual information while avoiding the
interference caused by redundant inputs. This leads to more
accurate strategy decisions. It also confirms the model's strong
expressive capacity when handling limited historical
information.

However, when the truncation length is further increased to
30 or 50, performance shows a slight decline. This may be due
to overly long input sequences introducing noise or irrelevant
information. Such inputs may distract the model from
important state changes and reduce generalization. Longer
sequences may also cause parameter redundancy and unstable
training, affecting prediction stability.

Figure 7. Test of the impact of time series feature truncation length on model performance

Overall, this experiment shows that proper configuration of
the temporal feature window is crucial in elastic scaling
strategy modeling. It is important to ensure the completeness of
input information while controlling the impact of redundancy.
The truncation strategy should match the service patterns and
system dynamics to fully leverage the model's temporal
modeling capability.

5. Conclusion
This paper addresses the intelligent modeling of elastic

scaling strategies for service instances. It proposes a cross-
service generalization framework that combines meta-learning
with deep prediction mechanisms. The framework effectively
overcomes the limitations of existing methods in handling
heterogeneous service environments, particularly in terms of
poor transferability and weak adaptability. By introducing a
service-aware task construction mechanism and a dual-stage
strategy prediction model, the proposed method achieves rapid
adaptation to new services with few samples. It outperforms
mainstream methods across multiple metrics, demonstrating its
feasibility and efficiency in complex scheduling tasks.
Experimental results show that the model maintains good
stability and generalization across diverse service scenarios. It
performs reliably even when handling highly dynamic and
heterogeneous service types. This capability directly supports
automation, resource optimization, and service-level QoS
assurance in cloud-native architectures. It also provides an
intelligent solution for real-world deployments involving data
center resource scheduling and microservice elasticity control.

In addition, this study conducts detailed experiments on
support set size, temporal window length, and service
heterogeneity. These analyses reveal the sensitivity of the
meta-learning framework to task configurations and offer
insights into tuning strategies. The findings contribute both
theoretical foundations and experimental references for future
research. The proposed method has methodological value and
strong application potential in areas such as service computing,
intelligent operations, and edge resource management. It
expands the practical boundaries of AI algorithms in system

engineering. Looking ahead, the modeling approach proposed
in this work still has room for improvement. One direction is to
enhance the task construction process with automatic task
discovery and task difficulty modeling. Another is to adopt
more lightweight or federated architectures to improve
deployment efficiency and privacy protection in large-scale and
multi-tenant environments. With the continued development of
cloud computing and edge intelligence, the demand for highly
adaptive and generalizable strategy models will keep increasing.
The methods and ideas presented in this paper are expected to
play a broader role in future system optimization tasks.

References
[1] Vettoruzzo, Anna, et al. "Advances and challenges in meta-

learning: A technical review." IEEE transactions on pattern
analysis and machine intelligence 46.7 (2024): 4763-4779.

[2] Yang, Jin, et al. "On a Meta Learning-Based Scheduler for Deep
Learning Clusters." IEEE Transactions on Cloud
Computing 11.4 (2023): 3631-3642.

[3] Chen, Hao, Ruiping Yin, and Zhen Yang. "Edge-Cloud
Collaborative High-Quality Recommendation: A Meta-Learning
Approach." 2023 18th International Conference on Intelligent
Systems and Knowledge Engineering (ISKE). IEEE, 2023.

[4] Sharma, Nelson, et al. "Deep meta q-learning based multi-task
offloading in edge-cloud systems." IEEE Transactions on
Mobile Computing 23.4 (2023): 2583-2598.

[5] Belarbi, O., Spyridopoulos, T., Anthi, E., Mavromatis, I.,
Carnelli, P., & Khan, A. (2023, December). Federated deep
learning for intrusion detection in IoT networks. In
GLOBECOM 2023-2023 IEEE Global Communications
Conference (pp. 237-242). IEEE.

[6] Liu, Xiaonan, et al. "Federated learning and meta learning:
Approaches, applications, and directions." IEEE
Communications Surveys & Tutorials 26.1 (2023): 571-618.

[7] Liu, Hongyun, et al. "Robustness challenges in reinforcement
learning based time-critical cloud resource scheduling: A meta-
learning based solution." Future Generation Computer
Systems 146 (2023): 18-33.

[8] Lee, R., Kim, M., Li, D., Qiu, X., Hospedales, T., Huszár, F., &
Lane, N. (2023). Fedl2p: Federated learning to personalize.
Advances in Neural Information Processing Systems, 36, 14818-
14836.

[9] Mo, Wenshuai, et al. "A meta-learning based resource allocation
algorithm in vehicular edge computing networks." 2024 IEEE
3rd International Conference on Electrical Engineering, Big
Data and Algorithms (EEBDA). IEEE, 2024.

[10] Chang, Bao Rong, Hsiu-Fen Tsai, and Guan-Ru Chen. "Self-
adaptive server anomaly detection using ensemble meta-
reinforcement learning." Electronics 13.12 (2024): 2348.

[11] Gui, Jie, et al. "A survey on self-supervised learning: Algorithms,
applications, and future trends." IEEE Transactions on Pattern
Analysis and Machine Intelligence (2024).

[12] Rani, Veenu, et al. "Self-supervised learning: A succinct
review." Archives of Computational Methods in
Engineering 30.4 (2023): 2761-2775.

[13] Jiao, Rushi, et al. "Learning with limited annotations: a survey
on deep semi-supervised learning for medical image
segmentation." Computers in Biology and Medicine 169 (2024):
107840.

[14] Han, Meng, et al. "A survey of multi-label classification based
on supervised and semi-supervised learning." International
Journal of Machine Learning and Cybernetics 14.3 (2023): 697-
724.

[15] Cavasotto, Claudio N., and Juan I. Di Filippo. "The impact of
supervised learning methods in ultralarge high-throughput
docking." Journal of Chemical Information and Modeling 63.8
(2023): 2267-2280.

[16] Vanschoren, Joaquin. "Meta-learning: A survey." arXiv preprint
arXiv:1810.03548 (2018).

[17] Lake, Brenden M., and Marco Baroni. "Human-like systematic
generalization through a meta-learning neural
network." Nature 623.7985 (2023): 115-121.

[18] Kim, Kyun Kyu, et al. "A substrate-less nanomesh receptor with
meta-learning for rapid hand task recognition." Nature
Electronics 6.1 (2023): 64-75.

[19] Luo, Jingjie, et al. "Meta-learning with elastic prototypical
network for fault transfer diagnosis of bearings under unstable
speeds." Reliability Engineering & System Safety 245 (2024):
110001.

[20] Zhang, Baoquan, et al. "Metadiff: Meta-learning with
conditional diffusion for few-shot learning." Proceedings of the
AAAI conference on artificial intelligence. Vol. 38. No. 15.
2024.

[21] Lv, Qiujie, et al. "Meta learning with graph attention networks
for low-data drug discovery." IEEE transactions on neural
networks and learning systems (2023).

[22] Nichol, Alex, Joshua Achiam, and John Schulman. "On first-
order meta-learning algorithms." arXiv preprint
arXiv:1803.02999 (2018).

[23] Tao, Yiyi. "Meta learning enabled adversarial defense." 2023
IEEE International Conference on Sensors, Electronics and
Computer Engineering (ICSECE). IEEE, 2023.

[24] Yang, Lei, et al. "Personalized federated learning on non-IID
data via group-based meta-learning." ACM Transactions on
Knowledge Discovery from Data 17.4 (2023): 1-20.

[25] Verma, R., & Nalisnick, E. (2022, June). Calibrated learning to
defer with one-vs-all classifiers. In International Conference on
Machine Learning (pp. 22184-22202). PMLR.

[26] Zoppi, Tommaso, et al. "Which algorithm can detect unknown
attacks? Comparison of supervised, unsupervised and meta-
learning algorithms for intrusion detection." Computers &
Security 127 (2023): 103107.

[27] Hao, Xiaoyang, et al. "Automatic modulation classification via
meta-learning." IEEE Internet of Things Journal 10.14 (2023):
12276-12292.

[28] Tan, Chenmien, Ge Zhang, and Jie Fu. "Massive editing for
large language models via meta learning." arXiv preprint
arXiv:2311.04661 (2023).

[29] Zhu, Yuqicheng, et al. "Active Transfer Prototypical Network:
An Efficient Labeling Algorithm for Time-Series
Data." Procedia Computer Science 217 (2023): 1427-1436.

[30] Shao, Yuanjie, et al. "Improving the generalization of MAML in
few-shot classification via bi-level constraint." IEEE
Transactions on Circuits and Systems for Video
Technology 33.7 (2022): 3284-3295.

[31] Hospedales, Timothy, et al. "Meta-learning in neural networks:
A survey." IEEE transactions on pattern analysis and machine
intelligence 44.9 (2021): 5149-5169.

[32] Jamal, Muhammad Abdullah, and Guo-Jun Qi. "Task agnostic
meta-learning for few-shot learning." Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2019.

[33] Girdhar, Rohit. Learning to Understand People via Local, Global
and Temporal Reasoning. Diss. Carnegie Mellon University,
2019.

[34] Yao, Xin, et al. "Federated learning with unbiased gradient
aggregation and controllable meta updating." arXiv preprint
arXiv:1910.08234 (2019).

	2.1 Supervised Learning
	2.2 Meta-Learning
	3.1 SATCM
	3.2 DSSPM
	4.1 Dataset
	4.2 Experimental setup
	4.3 Experimental Results
	1)Loss function changes with epoch
	2)Comparative experimental results
	3)Ablation experiment
	4)Supports sensitivity experiments on adaptation per
	5)Experiment on the impact of service type heterogen
	6)Test of the impact of time series feature truncati

