
Journal of Computer Technology and Software

ISSN:2998-2383

Vol. 4, No. 4, 2025

Self-Attention-Based Modeling of Multi-Source Metrics for
Performance Trend Prediction in Cloud Systems
Honghui Xin1, Ray Pan2
1Northeastern University, Seattle, USA
2Independent Researcher, Seattle, USA
*Corresponding Author: Ray Pan; raypan.research@gmail.com

Abstract: This paper addresses the modeling challenges posed by multi-source heterogeneous metrics in cloud system
performance trend prediction and proposes a self-attention-based prediction method. The proposed approach consists of two main
components: a Heterogeneous Feature Fusion Module and a Temporal Context-aware Attention Mechanism. The former aligns
and weights resource-level, application-level, and environment-level features through unified projection and gating mechanisms.
The latter models long-term dependencies among critical time steps in the sequence using a self-attention structure, enabling
precise capture of system state evolution trends. The model is trained in an end-to-end manner, demonstrating strong scalability
and generalization capability. The experimental evaluation is conducted on the real-world Alibaba Cluster Trace 2018 dataset and
includes comparisons with both classical and state-of-the-art methods. The results show that the proposed approach achieves the
best performance across all evaluation metrics, including MSE, MAE, RMSE, and R² . In further sensitivity analysis, the model
exhibits robust stability under varying hyperparameter settings, such as input window length, optimizer type, and learning rate.
Additionally, the multi-source feature contribution analysis confirms the distinct impacts of different feature categories on
prediction performance and highlights the necessity of multi-source information fusion. Overall, the experimental results
demonstrate that the proposed method offers significant advantages in terms of accuracy, stability, and practical utility, making it
well-suited for performance prediction tasks in complex cloud environments.

Keywords: System performance prediction, self-attention mechanism, multi-source feature fusion, time series modeling.

1. Introduction
With the rapid development of cloud computing

technologies, the complexity of modern information systems
continues to rise. System scale is expanding, component
interactions are becoming more frequent, and performance
fluctuations are exhibiting increasingly complex and dynamic
characteristics. In the actual operation of cloud platforms,
system performance prediction has become a key approach for
ensuring efficient resource allocation, improving service
stability, and reducing operational costs[1,2]. Especially under
the growing influence of features such as multi-tenancy,
heterogeneous architecture, and elastic resource scheduling,
single-dimensional or static indicators can no longer accurately
reflect the system's operating status. Therefore, constructing a
performance prediction model capable of integrating multi-
source information and understanding contextual dependencies
has become both a research hotspot and a technical challenge in
the field of cloud computing[3].

However, achieving high-precision performance trend
prediction faces numerous challenges. First, various
performance metrics in cloud systems exhibit strong
nonlinearity and temporal dependencies. Complex interaction
dynamics exist among multidimensional indicators such as
CPU usage, memory load, I/O rate, and network latency, which
are difficult to capture effectively using traditional models.
Second, these metrics often originate from different data

sources and suffer from issues such as inconsistent time
granularity, sampling delays, and distribution heterogeneity.

These problems hinder the ability of prediction models to
learn a unified feature representation. In addition, sudden
workload changes, scheduling policy adjustments, and external
request fluctuations in cloud environments further disrupt the
system's operating patterns, imposing stricter requirements on
prediction accuracy. Therefore, it is of significant research and
practical value to design a prediction mechanism that captures
semantic dependencies among multi-source indicators while
adapting to dynamic environmental changes[4,5].

In recent years, the self-attention mechanism has
demonstrated powerful modeling capabilities in natural
language processing and time series analysis, particularly in
capturing long-range dependencies and interactions among
multidimensional features. Inspired by this, we propose a
method for predicting performance trends in cloud systems that
integrates self-attention mechanisms with multi-source
information fusion[6]. Based on monitoring data from cloud
systems, the method introduces a multidimensional feature
modeling strategy. It extracts features from different types of
indicators through a multi-channel network and employs an
improved self-attention structure to dynamically learn
correlations and influence weights among the indicators. On
this basis, a time-aware contextual modeling module is
incorporated to more precisely capture the evolution trends of

system performance. The overall model not only adapts to
asymmetric dependencies among indicators but also responds
swiftly to sudden fluctuations, thereby significantly enhancing
the robustness and accuracy of performance prediction.
Compared with existing approaches, the proposed model offers
three key advantages[7,8,9]. First, by adopting a strategy that
fuses heterogeneous multi-source information, it overcomes the
limitation of relying on single indicators in traditional
performance prediction and achieves more comprehensive
system state awareness. Second, by introducing the self-
attention mechanism and dynamic contextual modeling, the
model possesses strong semantic representation capabilities and
effectively captures temporal dependencies, making it
particularly suitable for processing long sequences and high-
dimensional inputs. Third, experimental results on real-world
cloud platform datasets demonstrate that the proposed method
significantly outperforms mainstream baseline models in
prediction accuracy across various performance indicators and
exhibits superior generalization and real-time adaptability
under sudden workload scenarios. Overall, the method provides
new insights and practical support for building intelligent and
scalable cloud system performance management mechanisms.

In conclusion, this work addresses key challenges in cloud
performance trend prediction, including difficulties in multi-
source information fusion, insufficient modeling of indicator
dependencies, and delayed responses to sudden workloads. We
propose a high-performance prediction framework for
modeling heterogeneous indicators and complex dependencies.
By introducing self-attention mechanisms and dynamic feature
modeling techniques, the proposed approach substantially
improves the expressiveness and predictive accuracy of system
performance modeling. This research not only offers theoretical
contributions but also provides technical support for practical
applications such as intelligent scheduling, resource
optimization, and fault prediction in cloud platforms. In the
future, the method can be extended to more complex scenarios
such as multi-cloud environments and edge computing, thereby
promoting the intelligent development and automated
management of cloud infrastructures.

2. Background
2.1 Multi-source features

In cloud system performance prediction tasks, the quality
of feature representation directly determines the upper bound
of model performance[10,11]. Traditional approaches often
rely on single-source data inputs, such as CPU utilization or
memory usage, which, although indicative of certain aspects
of system operation, are frequently insufficient or incomplete
in practical multi-tenant environments. With the advancement
of monitoring systems and logging platforms, an increasing
number of studies have explored incorporating features from
diverse data sources, such as system call sequences, network
traffic, disk I/O, task scheduling logs, and even service
topology information, in order to construct more
comprehensive representations of system states. The
integration of multi-source features contributes to improved
adaptability of models in complex scenarios and enhances
semantic understanding of system behaviors[12].

Existing work primarily adopts feature concatenation or
aggregation strategies to integrate multi-source information,
typically by mapping various indicators into a unified vector
space for combination[13,14]. However, such approaches
often overlook the dynamic relationships and temporal
dependencies among indicators, making it difficult to capture
the latent semantic interactions across data sources. For
example, fluctuations in network latency may be caused by
increased load on a specific microservice, leading to resource
contention, a causal link that cannot be easily inferred from
static features alone. Furthermore, different data sources have
varying sampling frequencies and temporal resolutions. Naïve
concatenation may introduce noise or cause feature
redundancy, thereby reducing the generalization capacity of
the model. Consequently, incorporating a structured modeling
mechanism on top of multi-source features has emerged as a
key research challenge[15].

In recent years, some studies have attempted to employ
deep learning methods for unified modeling of multi-source
features, with structures such as attention mechanisms and
graph neural networks demonstrating strong flexibility in
handling heterogeneous data. Attention mechanisms can
dynamically assign weights to features from different sources,
thereby emphasizing the influence of key indicators. Graph
neural networks, on the other hand, can be used to model the
topological relationships among indicators, enabling cross-
dimensional feature interactions. Building on these insights,
this study further introduces a self-attention mechanism
embedded within a multi-channel feature extraction module.
This design enables the model to learn deep semantic
associations among multi-source features from a global
perspective, significantly enhancing both the expressiveness of
feature fusion and the capacity for temporal modeling.

2.2 Self-Attention Mechanism
The self-attention mechanism was originally introduced to

address the challenge of modeling long-range dependencies
and has demonstrated exceptional feature representation
capabilities across various domains, including natural language
processing, image recognition, and time series
analysis[16,17,18]. Its core principle lies in computing
attention weights between arbitrary positions in a sequence to
adaptively capture global contextual information, thereby
overcoming the gradient vanishing and information forgetting
issues commonly encountered in traditional recurrent neural
networks when processing long sequences. In system
performance prediction tasks, performance metrics exhibit
clear long-term dependencies and nonlinear interactions. The
introduction of self-attention equips models with enhanced
modeling capacity, enabling them to identify the influence of
critical moments or key indicators on future trends and thus
improving the accuracy and stability of predictions[19].

Existing research has shown that self-attention mechanisms
outperform traditional temporal models when handling high-
dimensional multivariate time series, particularly in scenarios
involving sudden events or pattern shifts in system
performance. Compared to feature modeling approaches based
on fixed windows or moving averages, self-attention can

dynamically adjust attention distribution to emphasize
predictive feature segments. Some studies have further
explored multi-head attention structures, which model
relationships across different feature subspaces in parallel,
thereby enhancing the model's perception of complex system
behaviors[20]. However, in practical deployment, self-attention
faces challenges such as high computational cost and
contextual incompleteness. In particular, when dealing with
multi-source heterogeneous inputs, effectively integrating
information from multiple attention channels remains a
significant challenge.

To address these issues, recent studies have explored
combining self-attention with other architectural components,
such as integrating it with convolutional networks to capture
local patterns, with graph structures to model topological
relationships, or introducing sparse attention mechanisms to
reduce computational complexity[21]. These explorations have
expanded the applicability of self-attention and introduced new
approaches to system performance prediction. Building on this
foundation, this study proposes an enhanced self-attention
module that models semantic-level weights across multi-source
input features, ensuring strong representational and
generalization capabilities in high-dimensional heterogeneous
environments. This design lays a solid foundation for accurate
forecasting of system performance trends.

3. method

To address the complex dependencies and dynamic
variation patterns among multi-source heterogeneous metrics
in cloud systems, this paper proposes a performance trend
prediction framework that integrates a self-attention
mechanism with multi-channel feature modeling. The goal is
to achieve more accurate and robust system performance
prediction in high-dimensional, multi-source environments.
Based on temporal monitoring data, the method employs an
end-to-end deep architecture that combines hierarchical
feature extraction, self-attention modeling, and trend decoding
modules to capture the nonlinear correlations and evolving
patterns among performance indicators. Compared with
traditional approaches, the proposed model introduces two key
innovations in architectural design. First, a Heterogeneous
Feature Fusion Module (HFFM) is proposed to align and
semantically integrate system metrics from different sources
and dimensions, thereby enhancing the expressive capacity of
multi-source information modeling. Second, a Temporal
Context-aware Attention Mechanism (TCAM) is designed to
dynamically capture critical dependencies within varying
temporal windows, thus improving the model's sensitivity and
responsiveness to changes in system state trends. The synergy
between these two components significantly enhances the
adaptability and generalization performance of the prediction
model under complex cloud environments. The model
architecture is shown in Figure 1.

Figure 1. Overall model architecture diagram
3.1 Heterogeneous Feature Fusion Module

To effectively model the complex performance patterns
of cloud systems, the proposed framework begins by ingesting
a set of heterogeneous time-series features derived from
multiple monitoring sources. Its module architecture is shown
in Figure 2. These features include resource-level metrics such

as CPU and memory usage, application-level indicators like
request volume and response time, and environment-level
signals such as network latency. By integrating diverse types
of temporal data, the framework captures rich contextual
information essential for accurate performance trend
prediction.

Figure 2. HFFM module architecture

Let the input sequence be },...,,{ 21 tXXXX ,

where each idn
i RX represents a multi-source feature at

the i-th time step, n is the number of data sources, and id
is the feature dimension of the E-th source. These inputs
usually include resource layer indicators (such as CPU and
memory utilization), application layer signals (such as service
latency), and environment layer statistics (such as network
I/O). The various features vary significantly in scale,
semantics, and dynamics.

In order to solve the problem of feature heterogeneity,
this paper linearly maps each feature source and transforms it
into a unified latent representation space. Specifically, each
type of feature is projected using a trainable linear
transformation to map it to a unified dimension:

iiiiii bXWXX)(~

Where '' , d
i

dd
i RbRW i is a learnable parameter

and 'd is a unified potential dimension. This operation
ensures that all input features are aligned in the same space,
which facilitates subsequent unified modeling.

On this basis, the fusion module concatenates the
projection vectors of all sources at each time step and
introduces a gating mechanism to dynamically adjust the
contribution weights of various features. The concatenated
representation is as follows:

]~;...;~;~[)()2()1(n
tttt XXXH

)(gtgt bHWG

ttt HGF

)(is the Sigmoid activation function, gg bW , is a

trainable parameter, and represents element-wise
multiplication. This gated fusion mechanism can dynamically
adjust the expression strength of features according to the
temporal context, thereby enhancing the model's ability to
perceive changes in key indicators.

Finally, the fused output of the entire time series is
defined as:

},...,,{ 21 tFFFF

And it is input into the subsequent attention modeling
module as a unified high-quality feature representation. This
fusion process fully captures the semantic information and
intrinsic dependencies of heterogeneous indicators in the
system, providing a solid representation foundation for
subsequent time series modeling.

3.2 Temporal Context-aware Attention Mechanism

In order to more effectively capture the key dependencies
in the evolution of system performance over time, this paper
further designs a temporal context-aware attention mechanism
(TCAM) based on the fusion features. The goal of this module
is to dynamically learn the influence intensity between each
time step based on the multi-source features in the historical
time series, thereby modeling the potential temporal
association. Its module architecture is shown in Figure 3.

Figure 3. TCAM module architecture

Let the fused sequence be },...,,{ 21 tFFFF , where

each 'd
i RF represents the joint feature vector of the i-th

time step.
Before performing attention modeling, the feature vector

of each time step is first mapped into three groups of
representations: query, key, and value to construct the
attention weight:

QFWQ , KFWK , VFWV

Where kdd
VKQ RWWW ',, is a learnable parameter

and kd is the dimension of attention representation. This
step embeds the original time series into the attention
calculation space, allowing the model to learn cross-temporal
dependencies from it.

The attention weights are calculated using the standard
scaled dot product attention mechanism:

V
d

QKVKQAttention
k

T

)(softmax)1,,(

The)(softmax operation is used to normalize each
row to obtain the degree of attention of each time step in the
global time series. This operation ensures that the model can
capture long-range dependencies and highlight the historical
segments that contribute most to future predictions.

To further improve the expressiveness of the model, this
paper introduces a multi-head attention mechanism to model
the attention representation in different subspaces in parallel:

O
h WheadheadConcatVKQMultiHead),...,(),,(1

),,(V
i

K
i

Q
ii VWKWQWAttentionhead

Where h represents the number of attention heads,
V
i

K
i

Q
i WWW ,, is the linear transformation matrix

corresponding to the i-th head, and OW is the output
mapping matrix. Through parallel modeling of multiple
attention subspaces, the model can understand the semantic
relationship between temporal contexts from multiple
perspectives and improve the stability and robustness of
prediction.

4. Experimental Results
4.1 Dataset

This study adopts the Alibaba Cluster Trace 2018 as the
system performance dataset for experimentation. Publicly
released by Alibaba, this dataset provides comprehensive
records of real-world cloud data center operations over an
extended period, including resource scheduling, container
lifecycles, and machine states. It covers approximately 4,000
physical machines and tens of thousands of containerized tasks,
offering high levels of authenticity and representativeness. The
data is sampled at a minute-level granularity and includes key
performance metrics such as CPU, memory, disk usage,
machine status, and resource requests and utilization. This
provides a solid foundation for studying resource fluctuations
and performance trends in multi-tenant cloud environments.

Unlike synthetic data or static logs, the Alibaba Trace
2018 exhibits distinct characteristics of real-world systems in
terms of data density, temporal continuity, and behavioral
diversity. The task workloads demonstrate highly dynamic
variations, including burstiness, periodicity, and resource
contention, which introduce significant modeling challenges
for performance prediction. In addition, the dataset contains
rich auxiliary information such as task priorities, QoS labels,
and user identifiers, offering natural support for multi-source
feature modeling and contextual semantic learning. These
features greatly enhance the flexibility and generalization
capacity of algorithm design.

During the data preprocessing phase, resource usage data
is segmented based on container lifecycles, and faulty nodes
and outlier samples are removed to ensure stable model
training. All features are normalized to the [0, 1] range, and a
sliding window approach is applied to construct sequential
inputs, allowing the model to learn the trends within
continuous performance fluctuations. This dataset serves as a
high-quality validation platform for the proposed multi-source
feature fusion and temporal attention mechanisms and
provides a solid data foundation for future deployment of the
algorithm in real-world cloud platforms.

4.2 Experimental setup
To evaluate the effectiveness of the proposed model in

system performance prediction tasks, experiments were
conducted based on the Alibaba Cluster Trace 2018 dataset
within a unified deep learning framework for both training and
testing. The original monitoring data was chronologically
divided into a training set (70%), a validation set (15%), and a
test set (15%) to ensure that the model does not access future
information during evaluation. During the modeling process,
all input sequences were constructed using a sliding window
strategy, with a window size of 60 and a prediction horizon of
10, allowing the model to capture both short-term fluctuations
and mid-term trends.

The experiments were conducted on a workstation
equipped with a high-performance GPU. The Adam optimizer
was used for parameter updates, with mean squared error
(MSE) as the loss function, and a learning rate decay strategy
was adopted to improve training stability. Table 1 presents the
core hyperparameter settings used during model training,
including batch size, learning rate, and hidden layer
dimensions, to ensure the reproducibility and fairness of the
experimental results. The main training configuration is shown
in Table 1.

Table 1: Training Configuration
Parameter name Setting Value
Batch size 128
Initial learning rate 0.001
Optimizer Adam
Sequence length 60
Prediction horizon 10
Attention heads 4
Hidden dimension 64
Epochs 100

4.3 Experimental Results
1) Comparative experimental results

First, this paper gives the comparative experimental results
with other models. The experimental results are shown in Table
2.

Table 2: Comparative experimental results
Method MSE MAE RMSE R2

XGBoost[22] 0.0386 0.1473 0.1964 0.831
MLP[23] 0.0321 0.1325 0.1792 0.864
LSTM[24] 0.0268 0.1194 0.1637 0.889
Transformer[25] 0.0243 0.1131 0.1559 0.901
Timemixer[26] 0.0227 0.1088 0.1506 0.912
ITransformer[27] 0.0219 0.1056 0.1480 0.917
Ours 0.0184 0.0972 0.1357 0.931

As shown in the experimental comparison results presented
in Table 2, the proposed method achieves the best performance
across all evaluation metrics, demonstrating its effectiveness
and advantages in system performance prediction tasks. In
terms of mean squared error (MSE), our approach achieves a
value of 0.0184, significantly outperforming other baseline
models. Notably, it shows substantial improvement over

traditional machine learning models such as XGBoost (0.0386)
and neural network baselines like MLP (0.0321). This indicates
that the proposed model offers superior predictive accuracy,
better capturing the complex dynamics of system performance
and reducing prediction bias.

Regarding mean absolute error (MAE) and root mean
square error (RMSE), which measure prediction stability and
deviation magnitude, our method also performs exceptionally
well. It achieves an MAE of 0.0972 and an RMSE of 0.1357,
which represent reductions of approximately 14.1% and 13.0%
compared to the Transformer model, respectively. This
suggests that the proposed model not only maintains overall
accuracy but also effectively reduces the occurrence of large
error events, indicating stronger robustness. In particular, under
conditions involving frequent load spikes or resource
fluctuations, traditional models often suffer from significant
prediction drift. In contrast, our model incorporates multi-
source fusion and temporal attention mechanisms to more
sensitively capture critical contextual information, resulting in
more stable prediction outputs.

From the perspective of the R² metric, the proposed method
achieves a value of 0.931, which is considerably higher than
XGBoost's 0.831 and LSTM's 0.889, indicating a stronger
ability to explain performance trends. As a measure of
goodness-of-fit, an R² value closer to 1 suggests better
reconstruction of the true output distribution. The improvement
in this metric reflects the model's enhanced capacity for
learning temporal feature structures and identifying key
dependencies, enabling a more comprehensive mapping
between input sequences and prediction targets.

In summary, by comparing against traditional machine
learning models (such as XGBoost), classic neural network
architectures (MLP and LSTM), and state-of-the-art temporal
modeling methods (Transformer, Timemixer, and
iTransformer), the proposed approach consistently achieves the
best results across all metrics. This demonstrates strong
predictive performance and generalization ability. The findings
validate the effectiveness of modeling strategies that integrate
heterogeneous features and context-aware attention
mechanisms, providing solid theoretical and empirical support
for future deployment in real-world cloud computing
environments.

2) Hyperparameter sensitivity experiment results

Furthermore, the experimental results of hyperparameter
sensitivity are given. First, the experimental results of learning
rate are given, as shown in Table 3.

Table 3: Hyperparameter sensitivity experiment results
(learning rate)

Learning Rate MSE MAE RMSE R2

0.004 0.0267 0.1219 0.1634 0.887
0.003 0.0212 0.1067 0.1456 0.919
0.002 0.0195 0.0993 0.1395 0.926
0.001 0.0184 0.0972 0.1357 0.931

Table 3 presents the hyperparameter sensitivity results of
the proposed model under different learning rate settings. It can

be observed that as the learning rate decreases progressively
from 0.004 to 0.001, the model's performance improves
consistently across all evaluation metrics. This indicates that
the model is sensitive to the learning rate parameter and that an
appropriate learning rate selection has a significant impact on
optimizing convergence speed and final accuracy. When the
learning rate is set to 0.004, the model yields an MSE of 0.0267
and an R² of 0.887. Although this suggests a certain level of
fitting ability, the prediction error remains relatively high,
likely due to the large step size causing the model to skip
optimal points or oscillate during training.

As the learning rate is reduced to 0.003 and 0.002, the
model's performance improves noticeably, with MSE dropping
to 0.0212 and 0.0195, and MAE decreasing to 0.1067 and
0.0993, respectively. This trend demonstrates that moderately
lowering the learning rate can guide the model parameters
toward the optimum more stably, thereby improving overall
prediction accuracy and robustness. Particularly under the
0.002 setting, the model approaches its optimal performance,
suggesting that this value serves as a relatively robust candidate
that balances training efficiency and accuracy.

At a learning rate of 0.001, the model achieves its best
performance, with the MSE reduced to 0.0184 and R²
improved to 0.931, indicating a more ideal fit. This result
suggests that a smaller learning rate facilitates finer gradient
updates, allowing the model to capture complex temporal
patterns while avoiding overfitting and training instability. It is
worth noting that although smaller learning rates may prolong
the training process, the improvement in accuracy for this task
is substantial enough to justify the additional time cost.

In summary, the learning rate, as a critical optimization
hyperparameter, has a direct influence on the performance of
the system performance prediction model. The experimental
results indicate that gradually decreasing the learning rate from
a larger initial value can significantly enhance prediction
performance, with the optimal value reached at 0.001. This
conclusion not only informs the optimization of the proposed
model but also offers a valuable reference for hyperparameter
tuning in future related research. Future work may also explore
adaptive learning rate strategies to further improve training
efficiency and model generalization.

Furthermore, the experimental results of different
optimizers are given, as shown in Table 4.

Table 4: Hyperparameter sensitivity experiment results
(Optimizer)

Learning Rate MSE MAE RMSE R2

AdaGrad 0.0249 0.1123 0.1578 0.896
SGD 0.0317 0.1295 0.1780 0.867
RMSprop 0.0208 0.1024 0.1443 0.922
0.001 0.0184 0.0972 0.1357 0.931

Table 4 presents the impact of different optimizers on
model performance under a fixed learning rate setting of 0.001.
The results clearly indicate that optimizer selection
significantly influences training outcomes in system
performance prediction tasks. Among all candidates, the Adam
optimizer consistently achieves the best performance across all
evaluation metrics, with an MSE of 0.0184, MAE of 0.0972,

RMSE of 0.1357, and R² reaching 0.931. This demonstrates
Adam's superior overall performance in terms of convergence
efficiency, error control, and fitting ability. These findings
align with common experience in the deep learning community,
where Adam's adaptive learning rate mechanism is known to
better accommodate gradient changes and avoid issues such as
local minima or vanishing gradients.

In contrast, the SGD optimizer performs the weakest in this
task, yielding an MSE of 0.0317 and an R² of only 0.867, with
significantly higher error compared to other optimizers. This is
primarily because SGD relies on a global fixed learning rate
and lacks sensitivity to gradient noise and local curvature. As a
result, it tends to converge slowly or exhibit unstable
fluctuations in complex high-dimensional time series modeling
tasks, making it difficult to effectively capture nonlinear
dynamic relationships among metrics. Therefore, while SGD
may be suitable for certain lightweight tasks, it proves
insufficient for multi-source heterogeneous data-driven
performance prediction.

The AdaGrad optimizer demonstrates moderate
improvement in prediction stability, achieving an MSE of
0.0249 and an R² of 0.896, outperforming SGD but still falling
short of Adam. While AdaGrad adjusts the learning rate
dynamically during training, which allows for faster early-stage
convergence, it tends to suffer from overly aggressive learning

rate decay in later stages. This behavior limits its ability to
further approach the optimal solution during extended training
periods, especially when dealing with complex system
performance data.

RMSprop, which emphasizes weighted historical gradients,
performs better than AdaGrad, reducing the MSE to 0.0208 and
increasing the R² to 0.922. It approaches Adam in several
metrics but still falls slightly behind. This indicates that
RMSprop has certain advantages in handling temporally
dependent data, though its limited perception of global gradient
trends can cause the optimization path to deviate from the
global optimum. In summary, these experiments demonstrate
the adaptability and stability of the Adam optimizer in system
performance prediction tasks, making it the most appropriate
choice in the current setting. Future work may explore
combined optimizer strategies or meta-learning-based
scheduling mechanisms to enhance optimization flexibility
across different tasks and training stages.

3) Sensitivity experiment of different input window
lengths of the model

Furthermore, this paper also presents a sensitivity
experiment on the model with different input window lengths,
and the experimental results are shown in Figure 4.

Figure 4. Sensitivity experiment of different input window lengths of the model

Figure 4 illustrates the sensitivity of the model's
performance to different input window lengths, with visual
analysis conducted using four evaluation metrics: MSE, MAE,
RMSE, and R². The overall trend shows that as the input
window length increases, the model's predictive ability
improves within a certain range. However, beyond a specific
threshold, performance gains plateau or even slightly decline.
This suggests that incorporating additional historical

information helps the model capture long-term dependencies in
system behavior, but excessively long input windows may
introduce redundancy or noise, thereby diverting the model's
attention from critical features.

From the MSE and MAE subplots, both metrics reach their
optimal values when the input window length is 60, after which
a slight rebound is observed. This indicates that a window
length of 60 is the optimal setting under the current model

architecture. At window lengths of 10 and 20, the errors are
significantly higher, implying that insufficient historical
context hampers the model's ability to capture complex
performance trends. Between window lengths of 40 and 60, a
rapid decline in error is observed, reflecting the model's ability
to benefit substantially from additional contextual input in this
range.

The trend in RMSE closely aligns with the other two
metrics but exhibits greater fluctuation when the window
length exceeds 70. This suggests some sensitivity in model
stability with respect to certain input lengths. The fluctuations
may result from difficulties in temporal alignment or training
instability caused by overly long input sequences, highlighting
the need to balance representational capacity and stability when
designing model input structures. Additionally, the overall
RMSE remains below 0.17, further confirming the model's
high predictive accuracy.

With regard to the R² metric, the model's fitting ability
increases progressively with longer input windows, peaking at
0.931 when the window length is 60, followed by a slight
decline. This indicates that a moderate increase in historical
context enhances the model's capacity to explain performance
evolution trends, while excessive expansion may hinder
generalization. In summary, an input window length of 60
achieves the best performance across all four metrics,
demonstrating an effective trade-off between capturing system
dynamics and maintaining model efficiency. This finding
provides a strong empirical basis for selecting model
parameters in future work.

4) Experimental analysis of the contribution of multi-
source features to prediction performance

This paper also presents an experiment to analyze the
contribution of multi-source features to prediction performance,
and the experimental results are shown in Figure 5.

Figure 5. Experimental analysis of the contribution of multi-source features to prediction performance

Figure 5 presents the results of the contribution analysis of
multi-source features to model prediction performance, using
MSE, MAE, RMSE, and R² as evaluation metrics. The
horizontal axis represents different feature combination
strategies. The experiment progressively introduces features
from various sources to evaluate their impact on overall model
performance. It can be observed that as feature dimensionality
increases, the model's performance improves correspondingly.
The most significant enhancement occurs after incorporating
environment-level features, confirming the positive
contribution of multi-source feature fusion to time series
modeling tasks.

In terms of the MSE and RMSE error metrics, using only
resource-level features (such as CPU and memory) results in
relatively high prediction errors. When application-level

features (such as service response time and request volume) are
added, error values drop significantly. This indicates that
upper-layer business behavior provides valuable representation
of underlying system performance. The inclusion of
environment-level features (such as network latency and disk
I/O) further reduces the errors, suggesting that these macro-
level system state indicators provide additional contextual
information that helps the model capture more accurate
dependency patterns.

The MAE metric shows a similar trend, reflecting enhanced
stability as multi-source features are integrated. As shown in
the figure, the mean absolute error decreases gradually with the
inclusion of more feature types, reaching its lowest point under
the “full feature” combination. This indicates that with the
support of multi-source information, the model not only

reduces overall error but also responds more consistently to
local fluctuations during prediction, demonstrating stronger
robustness.

The R² metric exhibits a steady upward trend and reaches
its highest value of 0.931 when all feature types are combined,
indicating the strongest capability in capturing performance
trends. This further confirms the complementarity among
multi-source features. The joint perception of resource,
application, and environment levels significantly enhances the
model's explanatory power. In summary, multi-source
information fusion plays a critical role in improving the
expressiveness and generalization ability of system
performance prediction models, providing practical support for
building accurate forecasting models in complex system
environments.

5. Conclusion
This study addresses the challenge of performance trend

prediction in cloud systems and proposes a deep learning
framework that integrates self-attention mechanisms with
multi-source feature modeling. By introducing a
Heterogeneous Feature Fusion Module and a Temporal
Context-aware Attention Mechanism, the model effectively
extracts key features and constructs global temporal
representations in high-dimensional, multi-source, and complex
dependency environments. These enhancements significantly
improve prediction accuracy and stability. Extensive
experimental results demonstrate that the proposed method
outperforms mainstream baselines across multiple metrics,
validating both the structural design and the superior
performance of the model.

Further insights from a series of sensitivity experiments
reveal that the model exhibits certain sensitivity to
hyperparameters such as input window length, optimizer
choice, and learning rate. Appropriate parameter configurations
can effectively leverage the strengths of the model architecture.
In addition, experiments on multi-source feature fusion
highlight the complementary nature of resource, application,
and environment-level metrics. Integrating these features not
only enhances overall predictive performance but also
improves the model's generalization and robustness in complex
scenarios. These experimental analyses provide a more
comprehensive and nuanced perspective on system modeling,
increasing the model's practical utility and engineering value.

Despite the strong results achieved in this work, there
remain several directions for further research. For example, the
current model focuses primarily on single-task prediction.
Future work could explore multi-task learning frameworks to
jointly model and predict multiple system performance
indicators. Moreover, in multi-tenant heterogeneous
environments, incorporating more adaptive mechanisms and
cross-domain transfer strategies may further enhance the
model's generalization and flexibility in real-world deployment.
The interpretability of the model also warrants deeper
investigation to improve system engineers' understanding and
trust in the prediction results.

In conclusion, this paper presents a forward-looking and
practical solution for system performance prediction, with solid

theoretical foundations and strong application potential. Future
efforts will continue in the directions of high-performance
forecasting, interpretable modeling, and cross-scenario
generalization to advance the development of intelligent
operations and resource scheduling in cloud platforms. We
thank all contributors of the experimental platforms and data
sources, and we are grateful to the reviewers for their attention
and valuable guidance.

References
[1] Yadav M P, Pal N, Yadav D K. Workload prediction over cloud server

using time series data[C]//2021 11th international conference on cloud
computing, data science & engineering (confluence). IEEE, 2021: 267-
272.

[2] Mouine E, Liu Y, Sun J, et al. The analysis of time series forecasting on
resource provision of cloud-based game servers[C]//2021 IEEE
International Conference on Big Data (Big Data). IEEE, 2021: 2381-
2389.

[3] Daraghmeh M, Agarwal A, Manzano R, et al. Time series forecasting
using facebook prophet for cloud resource management[C]//2021 IEEE
International Conference on Communications Workshops (ICC
Workshops). IEEE, 2021: 1-6.

[4] Al-Ghuwairi A R, Sharrab Y, Al-Fraihat D, et al. Intrusion detection in
cloud computing based on time series anomalies utilizing machine
learning[J]. Journal of Cloud Computing, 2023, 12(1): 127.

[5] Liang Y, Wen H, Nie Y, et al. Foundation models for time series
analysis: A tutorial and survey[C]//Proceedings of the 30th ACM
SIGKDD conference on knowledge discovery and data mining. 2024:
6555-6565.

[6] Chan K Y, Abu-Salih B, Qaddoura R, et al. Deep neural networks in the
cloud: Review, applications, challenges and research directions[J].
Neurocomputing, 2023, 545: 126327.

[7] Dubey A K, Kumar A, García-Díaz V, et al. Study and analysis of
SARIMA and LSTM in forecasting time series data[J]. Sustainable
Energy Technologies and Assessments, 2021, 47: 101474.

[8] Luo C, Qiao B, Chen X, et al. Intelligent virtual machine provisioning in
cloud computing[C]//Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence.
2021: 1495-1502.

[9] Yazdanian P, Sharifian S. E2LG: a multiscale ensemble of LSTM/GAN
deep learning architecture for multistep-ahead cloud workload
prediction[J]. The Journal of Supercomputing, 2021, 77: 11052-11082.

[10] Li X, Li Z, Qiu H, et al. Soil carbon content prediction using multi-
source data feature fusion of deep learning based on spectral and
hyperspectral images[J]. Chemosphere, 2023, 336: 139161.

[11] Wang S, Li W. GeoAI in terrain analysis: Enabling multi-source deep
learning and data fusion for natural feature detection[J]. Computers,
Environment and Urban Systems, 2021, 90: 101715.

[12] Wang C, Ma J, Shao J, et al. Non-invasive measurement using deep
learning algorithm based on multi-source features fusion to predict PD-
L1 expression and survival in NSCLC[J]. Frontiers in immunology,
2022, 13: 828560.

[13] Wang L, Wong L, Li Z, et al. A machine learning framework based on
multi-source feature fusion for circRNA-disease association
prediction[J]. Briefings in Bioinformatics, 2022, 23(5): bbac388.

[14] Subramanian A S, Weng C, Watanabe S, et al. Deep learning based
multi-source localization with source splitting and its effectiveness in
multi-talker speech recognition[J]. Computer Speech & Language, 2022,
75: 101360.

[15] Zhang Y, Wang Y. Machine learning applications for multi-source data
of edible crops: A review of current trends and future prospects[J]. Food
Chemistry: X, 2023, 19: 100860.

[16] Liu, Tianhong, et al. "A hybrid short-term wind power point-interval
prediction model based on combination of improved preprocessing
methods and entropy weighted GRU quantile regression
network." Energy 288 (2024): 129904.

[17] Huang Z, Liang M, Qin J, et al. Understanding self-attention mechanism
via dynamical system perspective[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023: 1412-1422.

[18] Wang Y, Yang G, Li S, et al. Arrhythmia classification algorithm based
on multi-head self-attention mechanism[J]. Biomedical Signal
Processing and Control, 2023, 79: 104206.

[19] Qian X, Zhang C, Chen L, et al. Deep learning-based identification of
maize leaf diseases is improved by an attention mechanism: Self-
attention[J]. Frontiers in plant science, 2022, 13: 864486.

[20] Zhu J, Tan Y, Lin R, et al. Efficient self-attention mechanism and
structural distilling model for Alzheimer's disease diagnosis[J].
Computers in Biology and Medicine, 2022, 147: 105737.

[21] Zhu W, Wang Z, Wang X, et al. A dual self-attention mechanism for
vehicle re-identification[J]. Pattern Recognition, 2023, 137: 109258.

[22] Niazkar M, Menapace A, Brentan B, et al. Applications of XGBoost in
water resources engineering: A systematic literature review (Dec 2018–
May 2023)[J]. Environmental Modelling & Software, 2024, 174: 105971.

[23] Yu R, Yu W, Wang X. Kan or mlp: A fairer comparison[J]. arXiv
preprint arXiv:2407.16674, 2024.

[24] Shiri F M, Perumal T, Mustapha N, et al. A comprehensive overview
and comparative analysis on deep learning models: CNN, RNN, LSTM,
GRU[J]. arXiv preprint arXiv:2305.17473, 2023.

[25] Tang Y, Wang Y, Guo J, et al. A survey on transformer compression[J].
arXiv preprint arXiv:2402.05964, 2024.

[26] Wang S, Wu H, Shi X, et al. Timemixer: Decomposable multiscale
mixing for time series forecasting[J]. arXiv preprint arXiv:2405.14616,
2024.

[27] Liu Y, Hu T, Zhang H, et al. itransformer: Inverted transformers are
effective for time series forecasting[J]. arXiv preprint arXiv:2310.06625,
2023.

	2.1 Multi-source features
	2.2 Self-Attention Mechanism
	3.1 Heterogeneous Feature Fusion Module
	3.2 Temporal Context-aware Attention Mechanism
	4.1 Dataset
	4.2 Experimental setup
	4.3 Experimental Results
	1)Comparative experimental results
	2)Hyperparameter sensitivity experiment results
	3)Sensitivity experiment of different input window l
	4)Experimental analysis of the contribution of multi

