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Abstract: Accurate channel state information (CSI) is essential for optimizing wireless communication performance.
Traditional models, such as parameter-based and autoregressive approaches, suffer from noise interference and adaptability issues.
In response, this paper proposes a novel deep learning framework combining a deep convolutional autoencoder with CNN-
BiLSTM to enhance CSI prediction. The autoencoder denoises and refines CSI data, while the CNN-BiLSTM extracts both local
and global temporal features. To address time-varying channel dynamics, transfer learning is employed, enabling the model to
adapt to new environments with minimal data. Comparative analysis with traditional and deep learning methods demonstrates that
the proposed approach significantly improves prediction accuracy, optimizes resource allocation, and enhances overall

communication quality.
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1. Introduction

Channel state information (CSI) quantifies the quality of
the radio link [1], and largely determines the physical layer
parameters and schemes of wireless communication
deployment to a large extent, so obtaining accurate CSI is
crucial to ensure the link performance of wireless
communication system. Channel prediction technology [2]
provides an effective method to directly improve the quality
of CSI without spending additional wireless resources, which
has attracted great attention of researchers. Traditional
channel prediction models include parameter model [3] and
autoregressive model [4]. The parameter model is easily
affected by channel changes, which leads to the expiration of
estimated parameters, while the autoregressive model is
vulnerable to noise interference [5].

With the rapid development of deep learning, the neural
network method based on data modeling has been proposed.
Its main feature is to adaptively capture the inherent
characteristics of data through training a large number of data.
Among them, Liao [6] proposed a neural network model
based on back-propagation to predict the CSI in the future.
However, BP neural network is a feedforward neural network,
which does not fully consider the time correlation of the
prediction sequence. A three- dimensional wireless channel
feature prediction model [7] based on back-propagation neural
network is proposed. Navabi [8] proposed to use the
correlation between base station characteristics and user
characteristics to predict the characteristic parameters of user.
In the process of neural network development, recurrent
neural network (RNN) has strong time series prediction ability
[9]. Liu [10] proposed the application of RNN to build a

narrowband single-antenna channel predictor, and further
expanded to MIMO channels in [11]. Jiang [12] adopted real-
valued RNN to implement multi-step predictor, and further
verified its effectiveness in MIMO system [13]. A hybrid of
convolutional neural network and short and long term
memory [14] is proposed to obtain the CSI of downlink
channel based on the CSI of uplink channel. On the contrary,
it focuses on predicting the future CSI from the past value of
the same frequency and subcarrier. Deep transfer learning [15]
is proposed to solve the problem of high training cost of the
downlink CSI feedback neural network. Considering the
variability of the real channel, Zeng proposed to incorporate
meta learning to further reduce the cost of model training [16].
It is proposed to use channel state information (CSI) of a
small number of antennas to extrapolate CSI of other antennas
and reduce training costs [17]. A sparse complex neural
network (SCNet) [18] is proposed to approximate the
mapping function from uplink to downlink. The downlink CSI
is predicted directly from the estimated uplink CSI without
the need for upstream and downstream link feedback.

These studies demonstrate the potential of neural networks
for wireless channel prediction, but they have some
limitations such as data availability, model complexity, and
accuracy. In order to alleviate the problems mentioned above
as much as possible, we propose a channel prediction
combining deep convolutional autoencoder and CNN-
BiLSTM to enhance the characterization energy capability of
the received CSI data by removing the introduced noise
during transmission, and then extract the local and global
features of the data by a lightweight feature fusion prediction
model based on CNN and BiLSTM. Also considering the



time-varying channel characteristics, we explore the use of
transfer learning to accurately predict new CSI in order to
prevent the single trained prediction network model from
being unsuitable for time-varying fading channels.

2. Channel System

We consider a wireless channel based on Rayleigh fading,
where electromagnetic waves propagate through multiple
paths and fade at different moments after reaching the
receiver superposition, and the probability density function of
the received signal obeys the Rayleigh distribution. The
symbol period is defined as f# , the maximum Doppler
frequency shift is  f; , the system bandwidth B 1/ ,the
change frequency of channel state is mainly affected by ts
and fy . Discrete sampling of baseband signal, the discrete
representation of the received signal is:

y(n) = h(n)x(n)+w(n)

Where, x(n) is the transmitted signal at the symbol period 7 ,
w(n) is the complex Gaussian noise subject to zero mean, and
h(n) is the complex channel gain, denoted as:

h(n)= h,(n)+ jh,(n)

3. Channel Prediction

3.1 Deep Convolutional Autoencoder Network

Noise interference is inevitable in the wireless transmission
process, especially in the process of signal modulation and
demodulation, which ultimately leads to the change of
channel state. We constructs a convolutional autoencoder
network with a relatively simple model, in which the length of
input data is Nx1. The input is encoded through convolution
and pooling operations. In order to recover the de- noised data,
convolution and up-sampling operations are used to recover
the length of Nx1, as in Figure 1.
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Figure 1. Deep convolutional autoencoder denoising
model

3.2 CNN-BIiLSTM

3.2.1 BIiLSTM

LSTM [19] avoids the problem of long-term dependence by
setting forgetting gates, input gates and output gates, and the
worthless connection information in the sequence is
eliminated and the relevant information is retained, but there
is the problem of learning sequence relevance only in the
forward direction. BILSTM [20] adds a reverse LSTM to the
LSTM, which is able to capture the before and after
contextual information features of the sequence
simultaneously by bi-directional processing, and reduce the
overfitting problem. The update process of BILSTM is shown
in Figure 2 as follows:
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Figure 2. Schematic diagram of BiLSTM
u,=LSTM" (wf (mu,(n-1)+ wF(n)h(n))

u, = LSTM ™~ (w,(n)u,(n+1)+w, (n)h(n))

Where: A(n) is the input at the current moment. udn) and us
(n) denote the forward-propagating and backward-propagating
hidden states, respectively. LSTM and LSTM  operations
are the neural network operations mentioned above; wy(n) and
wr (n) are the forward weight values respectively;ws (n) and
wpg (n) are the reverse weight values.

h(n+1) = concat(u,,u,)

3.2.2 Architecture

The prediction characteristics of wireless communication
channels are characterized by strong time series correlation,
the channel signal value in the past time seriously affects the
prediction performance. We construct a multi-scale feature
fusion model, which is named CNN-BiLSTM, based on 1D
CNN and BiLSTM, including a 1D CNN network branch, a
BiLSTM branch and a branch combined with 1D CNN and
BIiLSTM. It is adopted to fully learn the hidden features of
data from different dimensions and improve prediction
performance. In order to make use of the features along the
positive direction of the time axis in the channel signal, 1D
CNN is used to extract the local non- correlation features, so
as to obtain more time features. In order to make full use of
the two-way global time characteristics in the channel,
BiLSTM is used to process the input, and the local non-
correlation features extracted from the 1D CNN are fused to
form a three-channel bidirectional global and local time



characteristics. The dropout layer is introduced to prevent the
model from over-fitting, and finally the regression prediction
is carried out through the full connection layer. The model
structure is shown in Figure 3.
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Figure 3. CNN-BiLSTM Hybrid Model

4. Algorithm Evaluation
4.1 Predict result

The proposed fusion model based on convolutional
denoising autoencoder and CNN-BiLSTM is compared with
ELM, CNN, LSTM and variants of the proposed algorithm,
which are CNN-BIiLSTM (without noise reduction module)
and Deno-BiLSTM (without feature fusion module). Tables 1
and 2 show the average prediction performance of the two
datasets and it can be seen that the proposed algorithm
outperforms the prediction accuracy of the other methods. As
shown in Figure 6, the fitted curves are very close to the true
values and achieve more than 97% accuracy even under fast
fading channel conditions. the CNN-BiLSTM is slightly
worse than our model, which is due to noise interference, but
has better feature learning capability than the other networks
due to the fact that the CNN can extract local nonlinear
features of the data, while the BiLSTM can learn the time axis
of bidirectional information. The prediction performance of
other algorithms is relatively poor because they only learn a
single feature and may overfit the training set.

Table 1. Comparison of single-step prediction performance
on CSldata-0.01 dataset

Table 2. Comparison of single-step prediction performance on
CSldata-0.1 dataset

Method RMSE MAE R2
ELM 0.1432 0.1210 0.8974
CNN 0.1323 0.1168 0.9167
LSTM 0.1337 0.1176 0.9152
Deno- 0.1201 0.1053 0.9312

BiLSTM
CNN- 0.0909 0.0814 0.9599

BiLSTM
Ours 0.0728 0.0648 0.9745

Method RMSE MAE R2
ELM 0.1364 0.1273 0.9334
CNN 0.1371 0.1283 0.9322
LSTM 0.1406 0.1317 0.9278
Deno- 0.1252 0.1174 0.9429
BiLSTM

CNN- 0.1013 0.0870 0.9608
BiLSTM

Ours 0.0784 0.0565 0.9764

5. Conclusion

Aiming at the problems of noise interference, rapid change of
channel quality and outdated channel parameters in wireless
communication transmission, this paper combines the deep
learning method to predict signal CSI from the perspective of
signal prediction. Build a deep convolutional autoencoder
network model to preprocess the signal, fuse the mixed model
of CNN and BiLSTM, extract the global and local time
characteristics of the signal, and use small sample data to
transfer and learn the trained model. The proposed method is
compared with the traditional method and the deep learning
method. The results show that the proposed method can
effectively improve the accuracy of channel CSI prediction,
help to provide basis for channel parameters and adjustments,
improve communication quality, and save resources.
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